

Warm Up:

1. Given the quadrilateral at the right, what would you need to prove that it is a rectangle?

2. Given the quadrilateral at the right, what would you need to prove that it is a square?

G-CO.11 Learning Target: I can prove theorems about parallelograms.

JKLM is a parallelogram. Solve for x and y.
 (Show all work!) Describe what properties you used

y =
Describe the property used to solve for y:
x=
Describe the property used to solve for x:

2. Use the figure to answer the questions below.

Part A: Give the most specific name for the quadrilateral above. What property identifies it as this shape?

Shape?		
Explanation		

Part B: Solve for x.

 _			

Part C: Find the length of the quadrilateral's shorter

Complete the steps of this proof using the below diagram.

Given: Parallelogram ABCD

Prove: $\angle C \cong \angle B$

<u>Statements</u>	Reasons
1.Parallelogram ABCD	1?
2. <i>AB</i> ∥ <i>CD</i>	22
 ∠CAD≅∠BDA 	3.2
and $\angle CDA \cong \angle BAD$	
$4. \overline{AD} \cong \overline{AD}$	4.2
5. △CAD≅△BDA	5.2
6. ∠ <i>C</i> ≅∠ <i>B</i>	5?

Reason 1
Reason 2
Reason 3
Reason 4
Reason5
Reason 6

G-CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

 Use a compass and straightedge to inscribe regular hexagon in the circle below. Label all vertices of the hexagon. Leave all your construction marks.

 Use a compass and straightedge to inscribe a square into the circle below. Label all vertices of the square. Leave all construction marks.

G-GPE.4 Use coordinates to prove simple geometric theorems algebraically.

6. The coordinates of the vertices of a quadrilateral are A (1.5), B (2,2), C (-2,0), and D (-3,3).

Part A: How long is each side of the quadrilateral?Show your work.

<u>AB</u> = _____

<u>BC</u> = _____

 $\overline{CD} =$

 $\overline{AD} = \underline{\hspace{1cm}}$

Part B: What are the slopes of each side of the quadrilateral? Show your work.

<u>AB</u> = _____

<u>BC</u> =

 $\overline{CD} =$

 $\overline{AD} = \underline{\hspace{1cm}}$

Part C: What type of quadrilateral is it? Explain your reasoning.

Type of quadrilateral _____

Explanation:

Warm Up:

Warm Up:

Geometry 1 Final Exam Review

1. \overline{BD} bisects $\angle ABC$. Solve for x and find $m\angle ABC$

x= _____ m_ABC = ____

Define "bisect"

2-3. Use the picture at the right to answer the following questions.

- (a) Define "parallel." ____
- (b) Identify two segments that are parallel. _____
- (c) Define "perpendicular."
- (d) Identify two segments that are perpendicular _____
- (e) Define "skew." _____
- (f) Identify two segments that are skew.

4-6. Using a compass, con struct the perpendicular bisector of the following segment. Then, list all of your steps.

Steps:

- 1.
- 2.
- 3.
- 4.
- 5.

i E

7. \overline{AM} is the perpendicular bisector of \overline{XY} . Find the length of \overline{AX} .

8. Complete the following proof.

Given: $\angle A \cong \angle B$, $\angle B \cong \angle C$

Prove: $\angle A \cong \angle C$

Statements	Reasons	
$1 \therefore \angle A \cong \angle B$, $\angle B \cong \angle C$	1	
$2 \angle A = \angle B$, $\angle B = \angle C$	2	
3. $\angle A = \angle C$	3	
4. $\angle A \cong \angle C$	4.	

Define "transitive property":

9. \overline{QS} is the perpendicular bisector of \overline{PR} . Find the length of \overline{QR} .

$$\overline{QR}_{=}$$

10. Given the figure at the right, answer the questions that follow.

Given: line a || line b and line c || line d.

Identify the relationship between the following angles:

∠1≅∠8	
∠1≅∠5	
∠2≅∠11	
∠4≅∠8	
∠10≅∠11	

11. Find the slope of each line. Then, explain why lines a and b form a right angle.

Slopes:

Explanation:

12. For rectangle ABC	D, the slope of AB $\lim_{x \to 3} \frac{\pi}{3}$.	Fill in the slopes for all o	of its sides.				
	Slope of BC =			=			
(a) What information parallelogram? - rhombus? - square?	f quadrilateral EFGH are would you need to prove	e that this quadrilateral	is a				
(b) Find the length of				ind the slo			
(d) What is the most p	orecise name for this qua	drilateral?		_			
14. Given the diagram	at the right, find the slo	pe of each side.		F		8 6 7 5	
Explain your reasonin	el, if any?g	11 10 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13		10 -8 -6	4 -2	2 4 6 -2 -4 -6 I	8 10
15. Is a triangle with v Explain your reasoning	rertices <u>D(</u> 1,-1), E(-2, -1), g.	and F(-2, -5) a right triar	ngle?				<u>+</u>
Yes or No	s	- 10 - 25 - 30 - 32 - 38 - 32 -	_ ‡				+ + +
							‡

16. Given the 2 equations below, find the slope of each on e.

$$-4x + y = -3$$

$$-2x - 8y = 1$$

Are the lines parallel, coinciding, perpendicular, or none of the above? _______
Explain your answer. ______

- 17. If B(-3, -4) is reflected along the line y = -1, what are the coordinates of B'?_____
- 18. What are the coordinates of G after it is rotated 90° counterclockwise about the origin? _____

19. Which transformation will map point C onto point F? and

20. The shape at the right has rotational symmetry. How many degrees would the shape rotate so that point A maps onto Point B?

21. $\triangle ABC$ is reflected over \overline{TR} to produce $\triangle A'B'C'$

First, draw a picture to illustrate the information:

Then, choose the statement that will <u>not necessarily</u> be true, based on the picture:

(a)
$$\overline{AA'} \perp \overline{TR}$$

(b)
$$\overline{AA'} || \overline{BB'}$$

(c)
$$\overline{AB} \cong \overline{A'B'}$$

(d)
$$\overline{AA}' \cong \overline{BB}'$$

26. Describe the transformation $(x,y) \rightarrow (x,-y)$

22. A reflection over parallel lines is the same as a Draw a picture to illustrate your answer:		
23. Given quadrilateral ABCD, graph the quadrilateral. Then, apply the transformation shown. Finally, describe the transformation. A(-2,1), B(3,1), C(3,4), D(-2,4) Transformation: (x, y) → (-y,x) This is aof°.		_ _ _ •
Write the coordinate rule for the following rotations: $90^{\circ}: (x,y) \rightarrow ()$ $180^{\circ}: (x,y) \rightarrow ()$ $270^{\circ}: (x,y) \rightarrow ()$		
24. Describe the sequence of transformations that maps $\triangle ABC$ onto $\triangle A'B'C'$.	C B' A'	
25. Describe the series of transformations that maps RST onto GOP. R(2,3), S(5,8), T(1,6) G(-3,2), O(-8,5), P(-6,1)	A B	

27. $\triangle ABC$ is graphed on a coordinate plane and reflected over the y-axis. Point A' maps to point C, point C' maps to A and Point B' maps to B.

First, draw a picture to illustrate the description.

Then,	fill in	the b	olani	ks	be	low:
-------	---------	-------	-------	----	----	------

The triangles are _____ (right, isosceles, equilateral, OR scalene) and _____ (congruent OR not congruent).

28. Are the two figures shown below congruent? Explain why or why not. Yes or No _____

Explanation:							

29. For each of the following pairs of triangles, identify why the two triangles are congruent.

30. Complete the proof shown below.

Given: $\overline{DE} \| \overline{U\!R} \,$ and F is the midpoint of \overline{DU}

Prove: $\triangle DEF \cong \triangle URF$

Statements	Reasons	
1. $\overline{DE} \parallel \overline{UR}$	1.	
2. F is the midpoint of $\overline{D}\overline{U}$	2.	
3. ∠EDF≅∠RUF	3.	
4. ∠DFE≅∠UFR	4.	
5. $\overline{DF} \cong \overline{UF}$	5.	
6. △DEF≅△URF	6.	

31. In the diagram at the right, find the value of ${\bf x}$ and the measure of each angle.

x=____ angle measures:_____,____,____,____

32. In the diagram at the right, find the value of ${\bf x}$ and the measure of each angle.

x=____ angle measures:____,___,___

33. In the diagram below, what is the perimeter of triangle RST?

First, find the measure of the third angle: _____ What type of triangle is it? _____ Set two sides equal to solve for x... $R = 40^{\circ} \times 10^{\circ}$ $4x + 20 \qquad T$

Plug in x to find the perimeter (add all sides together).

34. Using a compass, construct an equilateral triangle inscribed in the given circle.

35. Using a compass, construct a hexagon inscribed in the given circle.

Measure the length of the radius with a ruler. Then, measure each of the sides of the hexagon. What do you notice?

36. Using a compass, construct a square inscribed in the circle below.

37. Use the diagram below to calculate the length of DE.

38. For the figure at the right, how are the two triangles congruent? _____ Complete the following congruence statement: $\triangle CBA \cong \triangle$ _____ .

Given: \overline{AE} and \overline{BD} bisect each other.

39. Koda places a ladder on level ground against a wall. When the base of the ladder is 6 feet from the wall, the ladder reaches to a height of 8 feet on the wall. Koda then moves the base of the ladder 2 feet closer to the wall. To the nearest foot, how high up the wall does the ladder reach?

40. Jesus walked home from school by traveling 7 blocks south and then 4 blocks west. What is the shortest distance from Jesus' home to school? Round to the nearest whole number.

41. The vertices of $\triangle DEF$ are $\mathbb{Q}(0,1)$, E(-2, -3), and F(3, -4). Find the vertices of $\triangle D$ " E " F " after a composition of the transformations in the order they are listed.

Translation 1: $(x,y) \rightarrow (x+2,y-3)$ Translation 2: $(x,y) \rightarrow (x-3,y+4)$

D"____ E"___ F"___

42. The endpoints of segment DE are $\mathbb{D}(-2, -2)$ and $\mathbb{E}(-1, -3)$ are reflected across the x-axis. When all the segments are connected, what type of quadrilateral is formed?

43. Given that MROP is a rhombus, if m $\angle MRO$ = 150°, what is m $\angle RPM$?_____

44. Complete the following proof.

Given: □ABCD

Prove: $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$

Statements	Reasons	
1) ABCD is a parallelogram.	1)	
2) $\overline{AB} \parallel \overline{CD}$ and $\overline{BC} \parallel \overline{DA}$	2)	
3) $\angle 1 \cong \angle 4$ and $\angle 3 \cong \angle 2$	3)	
4) $\overline{AC} \cong \overline{AC}$	4)	
5) $\triangle ABC \cong \triangle CDA$	5)	
6) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$	6)	

Warm-up Warm-u

Warm Up:

