VSPER Theory Molecular Structure 12.8-12.10 ## VSEPR Theory - Based on Lewis structures we can know the shape or "geometry" of molecules - The theory that predicts geometry (based on Lewis structures) is abbreviated VSEPR - VSEPR (pronounced "vesper") stands for Valence Shell Electron Pair Repulsion - VSEPR, as the name suggests, predicts geometry based on the repulsion of electron pairs (in bonds or by themselves) - Atoms and lone pairs repel one another and therefore take up space, thus, resulting structures have atoms maximally spread out #### **VSEPR** overview - Geometric/molecular structure: 3D arrangement of atoms in a molecule. - Sometimes the molecules are represented by AX_Y, where Y is the # of peripheral atoms - $AX_2 = linear$ - AX₃ = planar triangular - AX_4 = tetrahedral (tetra = 4 faces) - AX₅ = trigonal bipyramidal (2 pyramids) - AX₆ = octahedral (octa = 8 faces) #### **Linear Structure** - All atoms in a line - AX₂ - Ex. CO₂ - Bond angle 180° ## **Trigonal Planar** - Planar/flat- all 4 atoms in same plane - AX₃ - Ex. BF₃ - Bond angle= 120° #### Bent - Bent/ "v-shaped" - Due to lone pair of electrons - AX₃E - Ex. Bond Angle 120° #### **Tetrahedral** - Ex. Fig 12.11 on pg 364 - CH₄ - AX₄ - Bonds connecting H atoms define 4 identical triangular faces of a tetrahedro 109.5° ### Trigonal Pyramidal - AX₃E - 4 atoms 1 lone pair on central atom - Ex. NH₃ #### **Angular Bent** - AX₂E₂ - 3 atoms, 2 lone pairs on central atom - Ex. H₂O - Bond angle 105° ### Trigonal Bipyramidal - AX₅ - 5 atoms around a central atom - Ex. PCl₅ - central atom must be able to break octet rule #### See Saw - AX₄E - 4 atoms around a central atom w/ 1 lone pair - Ex. SF₄ ### T-shaped - AX₃E₂ - 3 atoms around central atom with 2 lone pairs - Ex. CIF₃ #### Octahedral - AX₆ - 6 atoms around a central atom - Ex. SF₆ - Central atom must be able to break octet rule! The F-S-F angles are all 90° #### Square Pyramidal - AX₅E - ex. IF₅ - 5 atoms around central atom with 1 lone pair #### Square Planar - AX₄E₂ - Ex. XeF₄ - 4 atoms around central atom with 2 lone pairs # Steps for Predicting Molecular Structure Using VSPER Model - 1. Draw the Lewis structure for the molecule - 2. Count electron pairs, arrange in way minimizing repulsion (as far apart as possible)-remember 3D - 3. Determine the positions of the atoms from the way electron pairs are shared. - 4. Determine the name of molecular structure from position of atoms (and lone electron pairs) ## Rules for Predicting Using VSPER Model Number of Pairs Name of Arrangement 2 Linear 3 trigonal planar 4 tetrahedral When 1/more e pairs are unshared(lone pairs)-see Table 12.4 on pg. 370 for names.