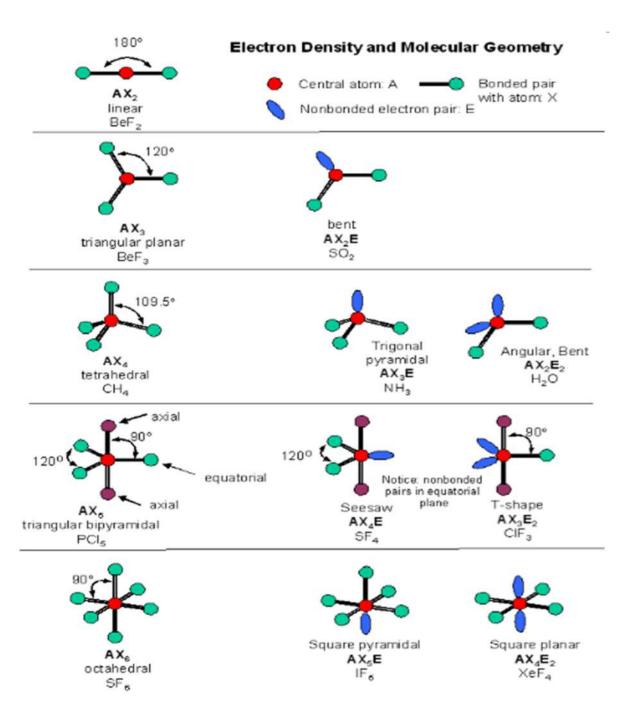
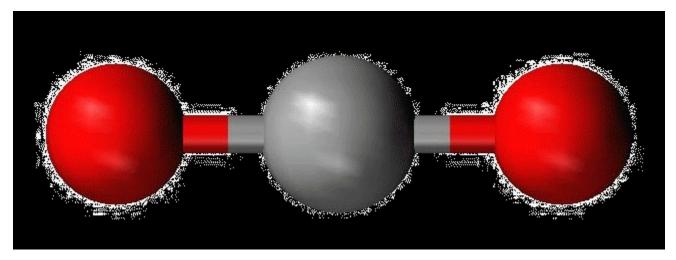
VSPER Theory

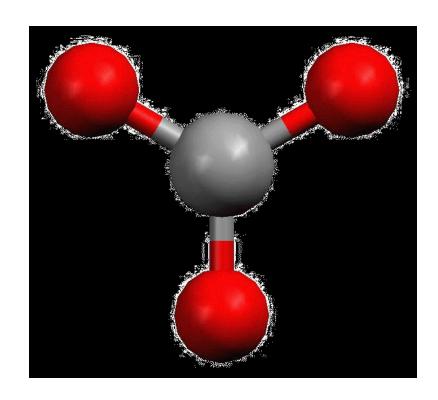

Molecular Structure 12.8-12.10

VSEPR Theory

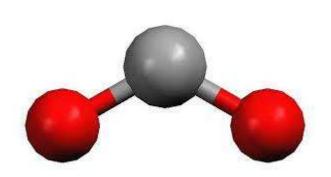
- Based on Lewis structures we can know the shape or "geometry" of molecules
- The theory that predicts geometry (based on Lewis structures) is abbreviated VSEPR
- VSEPR (pronounced "vesper") stands for Valence Shell Electron Pair Repulsion
- VSEPR, as the name suggests, predicts geometry based on the repulsion of electron pairs (in bonds or by themselves)
- Atoms and lone pairs repel one another and therefore take up space, thus, resulting structures have atoms maximally spread out

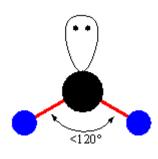

VSEPR overview

- Geometric/molecular structure: 3D arrangement of atoms in a molecule.
- Sometimes the molecules are represented by AX_Y, where Y is the # of peripheral atoms
 - $AX_2 = linear$
 - AX₃ = planar triangular
 - AX_4 = tetrahedral (tetra = 4 faces)
 - AX₅ = trigonal bipyramidal (2 pyramids)
 - AX₆ = octahedral (octa = 8 faces)


Linear Structure

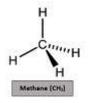
- All atoms in a line
- AX₂
- Ex. CO₂
- Bond angle 180°

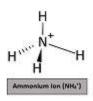

Trigonal Planar


- Planar/flat- all 4 atoms in same plane
- AX₃
- Ex. BF₃
- Bond angle=
 120°

Bent

- Bent/ "v-shaped"
- Due to lone pair of electrons
- AX₃E
- Ex. Bond Angle 120°

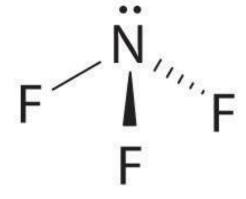


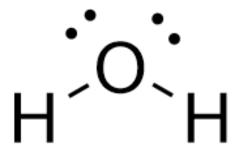


Tetrahedral

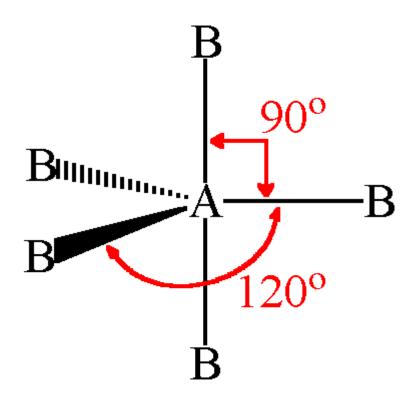
- Ex. Fig 12.11 on pg 364
- CH₄
- AX₄
- Bonds connecting H atoms define 4 identical triangular faces of a tetrahedro

109.5°

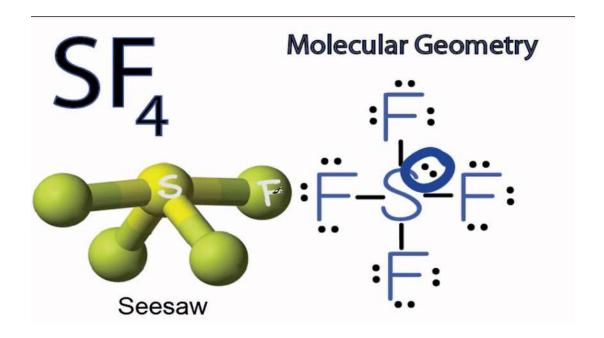



Trigonal Pyramidal

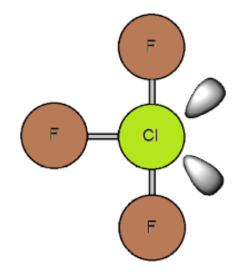
- AX₃E
- 4 atoms 1 lone pair on central atom
- Ex. NH₃


Angular Bent

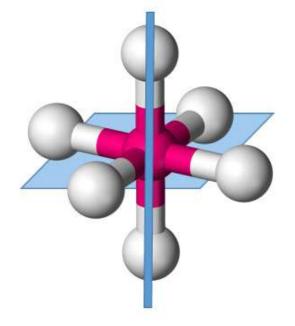
- AX₂E₂
- 3 atoms, 2 lone pairs on central atom
- Ex. H₂O
- Bond angle 105°


Trigonal Bipyramidal

- AX₅
- 5 atoms around a central atom
- Ex. PCl₅
- central atom must be able to break octet rule

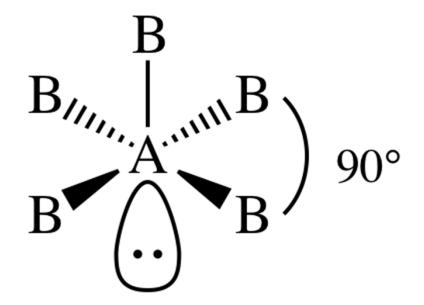

See Saw

- AX₄E
- 4 atoms around a central atom w/ 1 lone pair
- Ex. SF₄

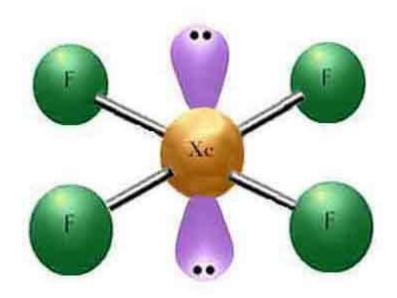

T-shaped

- AX₃E₂
- 3 atoms around central atom with 2 lone pairs
- Ex. CIF₃

Octahedral


- AX₆
- 6 atoms around a central atom
- Ex. SF₆
- Central atom must be able to break octet rule!

The F-S-F angles are all 90°


Square Pyramidal

- AX₅E
- ex. IF₅
- 5 atoms around central atom with 1 lone pair

Square Planar

- AX₄E₂
- Ex. XeF₄
- 4 atoms around central atom with 2 lone pairs

Steps for Predicting Molecular Structure Using VSPER Model

- 1. Draw the Lewis structure for the molecule
- 2. Count electron pairs, arrange in way minimizing repulsion (as far apart as possible)-remember 3D
- 3. Determine the positions of the atoms from the way electron pairs are shared.
- 4. Determine the name of molecular structure from position of atoms (and lone electron pairs)

Rules for Predicting Using VSPER Model

Number of Pairs Name of Arrangement

2 Linear

3 trigonal planar

4 tetrahedral

When 1/more e pairs are unshared(lone pairs)-see Table 12.4 on pg. 370 for names.