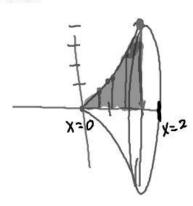

Let R be the region in quadrant I and II enclosed by the graphs of $y = 2 + \sin(x), y = \sec(x)$

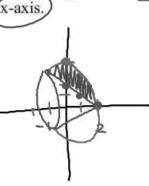
Find the volume of a solid whose base is R and whose cross sections cut by planes perpendicular to the x-axis are squares.


Find the volume of a solid whose base is R and whose cross sections cut by planes perpendicular to the x-axis are isosceles right triangles.

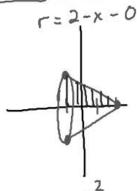
Find the volume of a solid whose base is R and whose cross sections cut by planes perpendicular to the x-axis are circles.

Find the volume of a solid whose base is R and whose cross sections cut by planes perpendicular to the x-axis are semi-circles.

12. Find the volume of the solid generated by revolving the region bounded by the curve $y = x^2$ and the lines y = 0 and x = 2 about the x-axis.

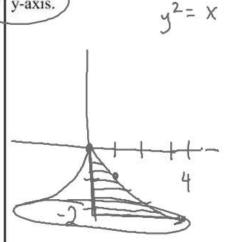

$$V = \int \pi r^{2}$$

$$V = \int x^{2} = 0$$


$$V = \int \int (x^{2})^{2}$$

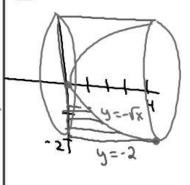
$$V = \int \left(\frac{1}{5}x^{5}\right)^{2} = \frac{32\pi}{5}$$

18. Find the volume of the solid generated by revolving the region bounded by the curve $y = 4 - x^2$ and the curve y = 2 - x about the

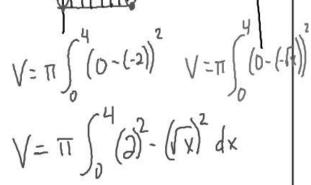


$$V = \pi \int_{-1}^{2} (4-x^{2}) dx - V = \pi \int_{-1}^{2} (2-x^{2}) dx$$

Outter Inner


Outer 2 / 2 / 2


20. Find the volume of the solid generated by revolving the region bounded by the curve $y = \sqrt{x}$ and the line x = 0 and y = -2 about the y-axis.



$$V = \pi \int_{-2}^{0} (y^2)^2$$
 $C = y^2 = 0$

20. Find the volume of the solid generated by revolving the region bounded by the curve $y = -\sqrt{x}$ and the lines x = 0 and y = -2 about the x-axis.

