Geometry 2H

Similarity Part II - REVIEW

G-SRT.4. Learning Target: I can prove the following theorems in narrative paragraphs, flow diagrams, in two column format, and/or using diagrams without words: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem using triangle similarity.

1. Given the triangle below, prove the Pythagorean Theorem using similar triangles.

Statement	Reasons		
 ∠B ≅ ∠B; ∠A ≅ ∠A 	RePlexive Proporty		
2) ∠BCA≅∠CDB≅ ∠CDA	ALL RIGHT ANGLES ARE CONGRUENT		
3) ΔABC~ΔACD; ΔABC~ΔCBD	AA~		
4) $\frac{x}{a} = \frac{a}{c}$	Correspondent sides of Similar As 12 paparts		
$5) cx = a^2$	MULTIPLICATE PROTURTS CROSS- MOLTIPLY.		
$6) \frac{b}{c} = \frac{c - x}{b}$	Corresponding Sides is Similar Di Repreportion		
$7) b^2 = c^2 - cx$	Multiplication Proporty Cross - Multiply		
8) $b^2 = c^2 - a^2$	Substituto. Property		
9) $a^2 + b^2 = c^2$	All. to Property &		
	Mulhplication.		

Name: _								_
Period:	1	2	3	1	5	6	7	Q

Given the triangle below, prove that a line parallel to one side of a triangle divides the other two proportionally.

Given: $\overline{PY} \parallel \overline{MK}$

Prove: $\frac{MP}{PW} = \frac{KY}{YW}$

Statement	Reasons		
1) <i>PY</i> <i>MK</i>	GIVEN		
2) ∠1 ≅ ∠3, ∠2 ≅ ∠4	Congruent		
 ΔWMK~ΔWPY 	AA~		
$4) \frac{MW}{PW} = \frac{KW}{YW}$	Corresponding Side of Similar Triangle Reportion		
5) $MW = MP + PW$ $KW = KY + YW$	Segment Addition Postulate		
$6) \frac{MP + PW}{PW} = \frac{KY + YW}{YW}$	Substitution Property		
$7) \ \frac{MP}{PW} = \frac{KY}{YW}$	Subtraction Property		

G-SRT.5. Learning Target: I can solve problems using similarity criteria for triangles. I can prove relationships in geometry figures using similarity criteria for triangles.

- 3. Jose wants to find the height of a building. There is a tree 7 feet in front of him, which he knows is 5 feet tall. The tree is 15 feet from the building.
- (a) Draw a picture with the information given.

- (b) How are the two triangles similar? AA~
- (b) What is the height of the building? (Round to the nearest foot.)

$$\frac{7}{5} = \frac{22}{x}$$
 $X = 15.7$ $\frac{5}{7}$ $X = 16$ Feet $\frac{7}{7}$ $\frac{110}{7} = \frac{7}{7}$ $X = 16$ Feet $\frac{7}{7}$

4. Karen wanted to measure the height of her school's flagpole. She placed a mirror on the ground 46 feet from the flagpole, and then walked backwards until she was able to see the top of the pole in the mirror. Her eyes were 5 feet above the ground and she was 13 feet from the mirror. Using similar triangles, find the height of the flagpole to the nearest tenth of a foot. (Figures may not be drawn to scale)

$$\frac{5}{13} = \frac{\times}{46}$$
5.46 = 13. ×
230 = 13 ×

[Height of the Flagph]

X = 17.69

5. Use the picture below to answer the following questions.

- (a) Is there enough information to prove the two triangles share d angle

 (b) If so, find the value of x. If not, what additional
- information would be needed?

$$\frac{5}{20+5} = \frac{x}{45}$$

$$30x = 225$$

$$x = 7.5 + 7$$

6. Given the two triangles shown below,

45

- (a) What similarity method makes it possible to find the value of x? SAS~
- (b) Find the value of x.

$$\frac{15}{10} = \frac{30}{x}$$

$$10.30 = 15.4$$

$$\frac{300 = 15x}{15}$$

Name:			

G-GPE.6. Learning Target: I can find the point on a directed line segment between two given points that partitions the segment in a given ratio.

7. Line segment AB in the coordinate plane has endpoints with coordinates A (-9,5) and B(1,0) Graph \overline{AB} and find the locations of point P so that P divides \overline{AB} into two parts with lengths in a ratio of 1:4.

NOTE: There are TWO possible answers. You must find both for full credit.

Show all of your work.

