Welcome back!!

EQ: G.CO.7 How do I use rigid motions to prove congruence

Week 10, Lesson 1

1. Warm Up

2. Notes

3. Left-Side Practice

4. TI-Nspire Activity

5. Closure

Warm-up Warm-u

Warm Up:

- 1. Looking back in your notes, list 5 facts about rigid motions.
- 2. Looking back in your notes, define "congruent" and give an example, in either a picture or in words.
- 3. Draw a picture to explain vertical angles.
- 4. Draw a picture to explain what a "midpoint" is.

notes

notes - notes -

notes - notes

rigid motion

- a transformation that preserves distance and angle measure; it doesn't change the size or shape of the object
- 3 types: translations, reflections, rotations

congruent

- have the same size and shape
- symbol:

naming congruent figures

- corresponding vertices must be listed in the same order

Summary:

t. III Class Activity (CA. III

Left-Side Practice!

Practice #1

If $HIJK \cong LMNO$, what are the congruent corresponding parts?

Practice #2

Are the two triangles congruent? Justify your answer.

Practice #3

Are the two triangles below congruent? Explain.

Find the length of JK.

Practice #4

The two triangles shown are congruent.

Find the value of x and the value of y.

ICA: In Class Activity ICA: In Class Activity

ICA: In Class Activity ICA: In Class Activity

TI-NSpire Activity

Welcome to TI-NSpires!

To move through the tabs, you can use your mouse, or press [ctrl] and then left/right.

Please choose the correct answers for each question. If you need help, ask your team!

Triangle ABC is congruent to triangle FGH. If angle B = 3y and angle G = y + 50, what is the value of y?

Triangle XYZ is congruent to triangle QRS. If the length of XY is 2x + 3 and the length of QR is 3x + 2, what is the value of x?

e Closure Clos

Closure Closur

Right Side...

Write a summary that answers the essential question.

Left Side...

EQ: G.CO.8 How do I prove that two triangles are congruent?

Essential Question Essential Que

Warm-up Warm-u

Warm Up:

- 1. The triangles shown at the right are translations of each other. Are the triangles congruent? Explain why or why not.
- 2. If the measure of angle A is 4x and the measure of angle A' is 6x 42, find the value of x and the measure of each angle.

ICA: In Class Activity ICA: In Class Activity

Introductory Activity

Step 1: Use a straightedge to draw and label any triangle ABC on your paper.

Step 2: Use a ruler. Carefully measure sides AB and AC. Use a protractor to measure the angle between them, angle A.

Step 3: Write the measurements on a piece of paper and swap cards with a table member. Draw a triangle using only your classmate's measurements.

Step 4: Compare your new triangle to your classmate's original triangle. Try to make your classmate's triangle fit exactly on top of your new triangle.

Step 5: Answer the following question in your IAN (left-side): Is your new triangle congruent to your classmate's original triangle? Explain why or why not.

notes - notes

Proving triangles congruent

notes - notes

Side-Side (SSS) Postulate

*Postulate: an assumed truth If 3 sides of 1 triangle are congruent to 3 sides of another, then the 2 triangles are congruent

Side-Angle-Side (SAS) Postulate

If 2 sides and the included angle of 1 triangle are congruent to 2 sides and the included angle of another triangle, then the 2 triangles are congruent.

 $\overline{AB} \cong \overline{DE}, \angle A \cong \angle D,$ $\overline{AC} \cong \overline{DF}$

Summary:

| Closure Clos

EQ: G.CO.8 How do I prove two triangles are congruent?

Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question

Warm-up Warm-u

Warm Up:

1.

What additional information do you need to prove that $\triangle VWY \cong \triangle VWZ$ by SAS?

 $\bigcirc A \bigcirc \overline{YW} \cong \overline{ZW}$

 \bigcirc $\angle Y \cong \angle Z$

 $\triangle WVY \cong \angle WVZ$

 $\bigcirc \overline{VZ} \cong \overline{VY}$

2.

Which pair of triangles can be proved congruent by SSS?

A

B

0

3. Draw a picture to explain what a "bisector" is.

Summary:

notes - notes **Proving** Angle-Side-Angle (ASA) Postulate triangles If 2 angles and the included side of 1 triangle are congruent to 2 angles and the congruent included side of another triangle, then the triangles are congruent. $\angle A \cong \angle D$, $\overline{AC} \cong \overline{DF}$, $\angle C \cong \angle F$ Corresponding Parts of Congruent **CPCTC** <u>Triangles</u> are <u>Congruent</u> If you know that 2 triangles are congruent, then you know that every pair of corresponding parts is congruent. There is no AAA for triangle congruence. There is no SSA for triangle congruence.

ICA: In Class Activity ICA: In Class Activity

Left-Side Practice

- (a) Identify IF the given triangles are congruent.
- (b) If they <u>are</u>, state by which postulate(s).
- OR, if they <u>aren't</u>, state what piece of information is missing.
- (c) For each congruent pair, write the congruence statement.

1.

ICA: In Class Activity ICA: In Class Activity

3.

Class Activity ICA: In Class Activity ICA: In Class Activity ICA: In Class Activity ICA: In Class Activity

5.

6.

7. Given: I is the midpoint of $\overline{\text{ME}}$ and $\overline{\text{SL}}$

G.CO.8 Practice #1

(tape on page 58)

Right Side...

Write a summary that answers the essential question.

Left Side...

Quick! What do each of the following stand for?

- SSS

- SAS

- ASA

- CPCTC

EQ: G.CO.8 How do I prove two triangles are congruent?

Essential Question Essential Que

Warm-up Warm-u

Warm Up:

Given the pictures below, match and draw the appropriate diagram for each term.

THEN, write a short definition for each term.

- 1. midpoint
- 2. bisector
- 3. alternate interior angles
- 4. vertical angles

Complete the proof.

Given: \overrightarrow{BD} bisects $\angle ABC$ and $\overrightarrow{AB} \cong \overrightarrow{BC}$.

Prove: $\triangle ABD \cong \triangle CBD$

Statements	Reasons	
1. AB ≅ BC	1.	
2. BD bisects ∠ABC.	2.	
3. ∠ABD ≅ ∠CBD	3.	
4. BD ≅ BD	4.	
5. △ABD ≅ △CBD	5.	

Given: $\overline{AB} \cong \overline{CD}$, $\overline{AD} \cong \overline{CB}$ **Prove:** $\triangle ABD \cong \triangle CBD$

Statements	Reasons
1. $\overline{AB} \cong \overline{CD}$	1.
2. $\overline{AD} \cong \overline{CB}$	2.
3.	3.
4. △ABD ≅ △CBD	4.

Given: $\overline{GH} \parallel \overline{JK}, \overline{GH} \cong \overline{JK}$ Prove: $\triangle HGJ \cong \triangle KJG$

Statements	Reasons	
1. GH JK	1. The company of the second	
2. ∠HGJ ≅ ∠KJG	2.	
3.	3. Given	
4. GJ ≅ GJ	4	
5.	5.	

Given: \overline{TR} and \overline{MN} bisect each other.

Prove: $\triangle NTP \equiv \triangle MRP$

Statements	Reasons	
1. \overline{TR} and \overline{MN} bisect each other	1.	
2. NP≅MP	2.	
3. <i>TP</i> ≅ <i>RP</i>	3.	
4. ∠ <i>NPT</i> ≅ ∠ <i>MPR</i>	4.	
 5. △NTP≅△MRP 	5.	

Warm Up:

Underneath your warm-up from yesterday, please answer the following:

In your own words, describe the SSS postulate and the SAS postulate.

