CHEMISTRY

September 9, 2013

Brain Teaser Collect Atomic Theory Magazine Project Grade Atomic Structure Worksheet ≻Unit 3 Review of Atomic Histories Review of Atomic Structures Isotopes, Bohr Model and Valence Shell > Homework Isotope Worksheet

Unit 3

Review of Atomic Histories Isotopes Bohr Model Valence Shell

Atomic History

Democritus

Dalton

JJ Thomson

Rutherford

ChadwickBohr

- Matter is composed of empty space in which atoms move
- Elements consist of atoms and compounds are collection of atoms
- "Plum pudding model" : Atoms contain negative particles called electrons
- Alpha particles, positive charge with a mass 7500x of electron. Proved the plum pudding model was wrong. Nucleus center (+) and tiny electrons moved in space around it.
- Discovered neutrons (slightly more massive than a proton).
- Electrons are in circular paths depending on their energy levels

Atomic History

De BroglieSchrodinger

Millikan

Moseley

- electrons move in waves rather than straight circular paths
- Wave Mechanical Model or Quantum Mechanical Model. Furthered De Broglie's idea of waves by stating that electrons are in clouds but in certain energy region
- Oil drop experiment: discovered that atoms had positive and negative charges and that they equal each other
- Helped to arrange atoms in the periodic table. Atoms were arranged in increasing atomic number using wavelengths and x-rays

Atoms, Isotopes and Ions

How do atoms of different elements differ?

The Modern View of Atomic Structure

What are the particles that make up an atom and how do they differ from one another?

Protonmass = 1 amu charge = +1

- >neutronmass = 1amu charge = 0
- electronmass = "0" amu charge = -1

1 amu = 1.6726 x 10⁻²⁷ kg latoms have equal numbers of protons and electrons so they are electrically neutral

Atomic Number

Atomic number
 Number of protons in an atom
 Identifies the element

Atomic Number

- Use the Periodic Table to complete the following.
 - 1. What element has the atomic number 18?
 - 2. What element has 35 protons?

How are atoms of one element different from those of another element?

They have different numbers of these subatomic particles.

Isotopes

How do we distinguish between atoms?
 Do all atoms of an element have the same composition?
 Heavy Water and Water Ice Cube in water

2

ŧ۵.

lsotopes

What implication does this have for the masses of atoms?

Average atomic mass

7

Isotopes differ only in the number of Neutrons

- Difference is shown by their mass numbers
- Notation: superscript for mass number, which is the sum of the number of protons and neutrons

Notation: subscript for atomic number, which is the number of protons (or electrons)

Be

Nuclear Particles

How many of each particle (protons, neutrons and electrons) are in these atoms?

⁷⁶ 35 Br	⁷⁸ 35 Br	⁸⁰ 35 Br
¹⁴ 7N	¹⁵ 7N	
¹⁸ 80 ¹⁷ 8	O ¹⁶ ₈ O ¹⁵ ₈ O	

> When an atom loses or gains electrons and acquires a net electrical charge. Gain electrons – negative ion - anion Lose electrons – positive ion - cation M M •7

Mg

Charge of ion = # of protons - # of electrons

How many protons, neutrons and electrons does ⁴¹₂₀Ca²⁺ have?

How many protons, neutrons and electrons does ⁷⁸35Br ⁻ have?

Think-Pair-Share

Basic Atomic Structure Worksheet

Closure

- 1. How many protons, neutron and electrons does Mg have?
- 2. How many protons, neutron and electrons does 7₄Be⁻² have?

Unit 3 Periodic Table and Trends

I. Periodic Law – Dmitri Mendeleev

The properties of the elements relates to their <u>atomic number</u>

- The properties of the elements go through a pattern of change as you move across the periodic table
- Elements of similar properties occur at intervals
- **Period** horizontal row across the periodic table
 - Refer to the board
- Group (or family)- vertical column down the periodic table
 - These elements generally have about the **same** properties
 - Refer to the board

II. Characteristics of different groups

- Elements in the same group have characteristics similar to each other, yet different from the other elements in the periodic table.
 - <u>Similarities</u> occur because elements in the <u>same group</u> have the <u>same number</u> of <u>valence</u> electrons
 - Valence electrons determine many of the properties of an element
- Periodic table is divided into 4 main groups
 - Representative or main-group elements
 - Transition metals
 - Lanthanide series
 - Actinide series

III. Groups or families (Vertical columns)

Groups 1A – <u>Alkali metals</u>

- <u>Very reactive</u>
- Explosive reactions with water
- One valence electron
- All metals

Groups 2A – Alkaline Earth Metals

- Quite reactive
- Two valence electrons
- All metals

Note: Draw the electron-dot diagram for every element in each of the groups Note: Refer to handout Groups 3A – Boron Family Varies from semi-metallic to non-metallic in properties Three valence electrons Group 4A – Carbon Family Varies from non metallic to metallic in properties Four valence electrons

➢ Group 5A – Nitrogen Family Varies from non-metallic to metallic properties Five valence electrons Groups 6A – Oxygen Family Mostly non-metallic Six valence electrons ➢ Group 7A – Halogens All are non-metallic and make colorful gases Seven valence electrons

Group 8A – Noble gases All non metals and highly unreactive Eight valence electrons Transition metals All have metallic properties Valence number varies Lanthanoids & Actinoids Radioactive, many are non-natural or man-made Valence number varies

Unit 3 Light and Quantized Energy Electron Configuration

> Objective:

 Learn how electrons are arranged in an atom and how that arrangement plays a role in their chemical behavior

III. Bohr Model of the Atom

- Bohr reasoned that <u>electrons</u> can move around the nucleus only at <u>distances</u> that correspond to those amounts of <u>energy</u>.
- These regions of space in which electrons can move about the <u>nucleus</u> of an atom are called <u>energy levels</u>.

 Bohr atomic model assigns <u>quantum</u> numbers (n) to <u>electron orbits</u>.
 Refer to periodic table

Bohr Movie Clip

Where all of this has led to

Bohr Model – did some good things but it is not the whole truth.

Practice

 ➢ Part 1: Complete Bohr's Diagram Worksheet
 ● 10 minutes
 ➢ Part 2: Complete Practice Quiz
 ● 15 minutes
 ● Quiz → This Friday

Review of the Periodic Kingdom

Read the article on "The Terrain"
 Answer Questions to "Review of the Periodic Kingdom"
 Write in complete sentences
 Time: 30-45 minutes

Color Coding the Periodic Table

Objective: Understand how the periodic table is arranged.
 Complete "Family Ties" Worksheet
 Read and use "Student Information Sheet" to complete worksheet

Color each group on the table as given in the instructions "Student Worksheet"

Brain Teaser Unit 3: Quiz Result (?) ➢ Practice: • Draw Electron Dot Structure Lecture: Light and Quantized Energy Complete "Color coding the Periodic Table" > Homework: Finish coloring periodic table

Electron Dot Structure

Draw Lewis Dot Structure

- Only show the valence electrons
 - Phosphorus
 - Calcium
 - Potassium

Draw Lewis Dot Structure of the following ions:
K ⁺¹
Ca ⁺²
O ⁻²

Unit 3

Light and Quantized Energy Electron Configuration

> Objective:

 Learn how electrons are arranged in an atom and how that arrangement plays a role in their chemical behavior

I. Light and Quantized Energy

Certain elements emit visible light when heated in a flame.

Analysis of the emitted light revealed that an electron behavior is related to <u>arrangement</u> of the <u>electrons</u> in its atoms.

II. Wave and Particle Nature of Light

Wave Nature of Light

- Wavelength is the shortest distance between equivalent points on a continuous wave.
- All electromagnetic waves travel at a speed of <u>3.00 x 10⁸ m/s</u> in a vacuum
- Electromagnetic waves may have different wavelengths and frequencies
II. Wave and Particle Nature of Light

II. Wave and Particle Nature of Light

≻Light

- Continuous Spectrum
 - Colors formed when <u>white light passes through a</u> prism and separates into <u>different wavelengths</u>

Bright Line Spectra

- <u>Lines of color produced by light emitted from heating</u> substances and passing them through a prism
- Fingerprints of elements
- Researchers can determine values of energy levels in atoms
- Used to identify different elements

II. Wave and Particle Nature of Light

Particle Nature of Light

- Observation of unique line spectra led to <u>Quantum</u> Theory
 - <u>Quantum</u> is the <u>minimum</u> amount of <u>energy</u> that can be <u>gained</u> or <u>lost</u> by an <u>atom</u>.

 Helps to explain why <u>heated</u> objects emit only certain <u>frequencies</u> of <u>light</u> (E=hv)

Fourth Third Second First Nucleus

How do fireworks emit light?

DemoSr, K, Li, Cu, Na

Where all of this has led to

Bohr Model – did some good things but it is not the whole truth.

Some Questions

Color arises from electrons shifting from one orbital to another of different energy

Ground state and excited state

What shift would give rise to emission of light? to absorption of light?

Where all of this has lead to

Quantum Model

What is the Quantum Mechanical Model?

It predicts quantized energy levels for electrons, like the Bohr model.

What is Quantum Theory?

It does not describe the exact path that electrons take around the nucleus of an atom, but is concerned with the probability of an electron being in a certain place.

Orbitals

➢ Areas where an electron can be found
 ➢ Can have up to two electrons
 ➢ Fuzzy boundaries → "Electron Cloud"

The Closed Sphere Model

For convenience
 Shows where the electron is 90% of the time

The Heisenberg Uncertainty Principle

You can never know exactly where an electron is if you know how exactly fast it is moving.

You can never know exactly how fast an electron is moving if you know exactly where it is.

Video

- Video: Greatest Discoveries with Bill Nye: Physics (atomic physics)
- Those Pesky Atoms Heisenberg and the Structure of Atoms Video: Particles Waving: The Dual Nature of Light and Matter

http://www.youtube.com/watch?v=yDCCbxCJLIM

Color Code the Periodic Table

Brain Teaser >Notes: Bohr's Model Orbital Diagrams and Electron Configuration Practice Writing electron configuration > Homework Electron configuration worksheet

Preview of Lesson

- Where are electrons found around the nucleus?
- 4 different shaped orbitals (x-ray diffraction and electron microscopy)
 - ●s, p, d, f
- Higher energy levels have more shapes
 Each orbital can hold 2 e Locate an e- 90% of the time
 Orbital is also called Subshells

Bohr's Model

➢ Model of electrons in fixed orbits to explain quantizationFigure 6.14 > Transitions between orbits emits or absorbs light

Observation of unique line spectra led to Quantum Theory

Orbital Diagrams and Electron Configurations

n = Principle quantum number

Describes the energy level the electron occupies

Orbital Energy Levels

Shape of orbital designated by the letters

s, p, d, f

Shapes of Orbitals

Shape of orbital designated by the letters s, p, d, f

Orbitals have different shapes

s Orbital shape

The s orbital has a spherical shape centered around the origin of the three axes in space.

p orbital shape

There are three dumbbell-shaped p orbitals in each energy level above n = 1, each assigned to its own axis (x, y and z) in space.

d orbital shapes

Things get a bit more complicated with the five d orbitals that are found in the d sublevels beginning with n = 3. To remember the shapes, think of "double dumbells"

...and a "<u>d</u>umbell with a <u>d</u>onut"!

Shape of f orbitals

Combination of electron microscopy and x-ray diffraction produced image of orbitals

Sets of Orbitals (Subshells)

Depending on the type of orbital, we find that they occur in sets differing in their orientation in space

Label periodic table

s - set of 1
 p - set of 3
 d - set of 5
 f - set of 7

Orbitals.

Sizes of orbitals Size depends on the value of n

Orbitals with the same n are about the same size

Check for understanding

What are the subshells?
 How many sets of electrons are found in each subshell?
 What is the principal quantum number for Ar?

Electron Configurations of Some Atoms

The first ten elements

Element	Orbitals			Electronic
	1 <i>s</i>	2 <i>.s</i>	$2p_x 2p_y 2p_z$	Configuration
Н	1			1s ¹
He	↓			1s ²
Li	↓	1		$1s^2 2s^1$
Be		_↑↓		$1s^2 2s^2$
В				$1s^2 2s^2 2p^1$
С		†↓		$1s^2 2s^2 2p^2$
Ν		†↓		$1s^2 2s^2 2p^3$
0		1₽		1s ² 2s ² 2p ⁴
F	1+	1₽		1s ² 2s ² 2p ⁵
Ne	<u>↑</u> ↓	<u>↑</u> ↓		1s ² 2s ² 2p ⁶

Practice

Write the electron configuration for the 1st 5 elements on the periodic table

Shorthand Notation for Orbitals

Combinations of first two quantum numbers; number of orbital types equals the shell number (n). **≻**1s ≥2s, 2p ≥3s, 3p, 3d ≻4s, 4p, 4d, 4f > 5s, 5p, 5d, 5f, (5g) >6s, 6p, 6d, 6f, (6g, 6h)

Refer to Electron Configuration Worksheet

Aufbau Principle

Aufbau Principle: start with the nucleus and empty orbitals, then "build" up the electron configuration using orbitals of increasing energy

Electron Configurations

Electron Spin and Pauli Exclusion Principle:

Only two electrons can occupy a single orbital and they must have opposite spins

Electron Configurations

>Hund's Rule:

 When filling a subshell, such as the set of 3 p orbitals, place 1 electron in each before pairing up electrons in a single orbital

Electron Configurations

- Arrangement of electrons in the orbitals is called the electron configuration of the atom
- The ground state configuration can be predicted, using the Aufbau Principle, the Pauli Exclusion Principle, and Hund's Rule.

Filling _ rules.exe

Electron configurations

How do we know what the filling order is?

> What chemistry tool might we rely on?

Electron Configurations and the Periodic Table

Valence electron configurations repeat down a group

aufba

Ground state electron configurations

Example: Li

• atomic number = 3

• nucleus has 3 protons

neutral atom has 3 electrons

2 electrons in 1s orbital, 1 electron in 2s orbital

2s

S

Different ways to show electron configuration

Energy level diagram

Box notation

Spectroscopic notation

Li $1s^2 2s^1$

Read this "one s two" not "one s squared" Write the superscript 1. Don't leave it blank

Practice

Review
Refer to 3-3 Practice Worksheet
Electron configuration worksheet

Using the Periodic Table

(row #) p(row # - 2) f

The f-block is inserted into to the d-block

Electron configuration of O

> Atomic number of O = 8 so neutral atom has 8 e^{-}

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	¹⁰ Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	³³ Аз	³⁴ Se	35 Br	³⁶ Kr
37 Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	44 Ru	₄₅ Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	⁵² Te	53 	54 Xe
Cs	⁵⁶ Ba	57 La	72 Hf	⁷³ Та	74 W	⁷⁵ Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	⁸⁵ At	86 Rn
87 Fr	88 Ra	89 Ac	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sb	107 Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Uun	111 Uuu	112 Uub						
			58 Ce	⁵⁹ Pr	60 Nd	61 Pm	⁶² Sm	63 Eu	64 Gd	65 Tb	⁶⁶ Dу	67 Ho	68 Er	⁶⁹ Tm	⁷⁰ Yb	71 Lu	
			90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr	

Electron configuration of Co

> Atomic number of Co = 27 so neutral atom has $27 e^{-1}$

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	¹⁰ Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	³¹ Ga	32 Ge	³³ Аз	³⁴ Se	35 Br	³⁶ Kr
37 Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	⁵⁴ Xe
Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	⁷⁵ Re	76 Os	77 Ir	78 Pt	79 Au	⁸⁰ Hg	81 TI	82 Pb	83 Bi	84 Po	⁸⁵ At	86 Rn
87 Fr	88 Ra	89 Ac	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sb	107 Bh	¹⁰⁸ Hs	109 Mt	110 Uun	111 Uuu	112 Uub						
			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
			90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr	

Write the electron configuration: Aluminum Copper

