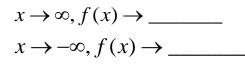
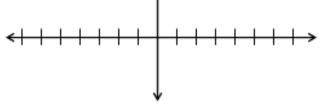
Algebra II: Polynomial Functions Unit 4 Review

Name _____

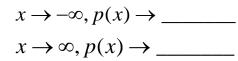

Jnit 4 Review	Period	Date	e
Learning Target	Weight	Review Questions	<u>Do I Know It?</u> How will I prepare if I do not?
A-APR.B.3: Identify zeroes of polynomials when suitable factorizations are available, and use the zeroes to construct a rough graph of the function defined by the polynomial. * <i>Embedded A-APR.2, F-IF.7c</i>	3	1 – 5	
A-REI.D.11: Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	1	6 – 10	
F-IF.B.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: domain and range, intercepts; intervals where the function is increasing, decreasing, positive, or negative, and symmetries. <i>*Embedded F-IF.7c</i>	2	11 - 14	
F-IF.C.9: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has a larger maximum. * <i>Embedded F-BF.3, F-IF.6</i>	2	15 – 19	

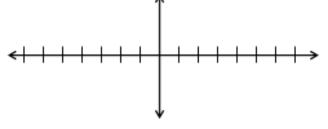
Algebra II: Polynomial Functions Unit 4 Review


A.APR.3 Learning Target: I can sketch a graph of the polynomial using the zeroes and end behavior 1. Given the function $f(x) = -x^3 + 4x^2 - 4x$

Part A: Identify the zeroes of the function.

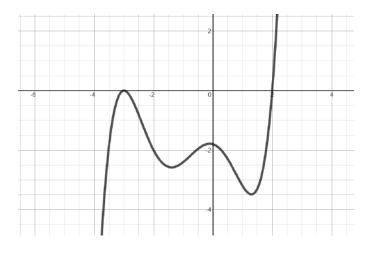
<u>Part B:</u> Describe the end behavior of the function.


Part C: Use this information to sketch the graph of the function.


2. Given the function $p(x) = x^4 - 9x^3 + 22x^2 - 32$

<u>*Part A:*</u> Identify the zeroes of the function.

Part B: Describe the end behavior of the function.



<u>*Part C:*</u> Use this information to sketch the graph of the function.

N	Jame
Р	eriod Date
	Useful Links/Videos for this Standard
	Graphing polynomials
	http://www.coolmath.com/algebra/22-graphing-
	polynomials
	End Behavior of Polynomials
	https://www.khanacademy.org/math/algebra2/polyn
	omial-functions/polynomial-end-
	behavior/v/polynomial-end-behavior
	https://www.youtube.com/watch?v=y78Dpr9LLN0
	&feature=youtu.be%2F
~	

3. The graph below is a polynomial function.

<u>*Part A:*</u> Choose ALL true statement about the polynomial graphed.

- (a) The function is a 3rd degree (cubic) polynomial.
- (b) The function is 4th degree (quartic)
- (c) The function is 5th degree (quantic)
- (d) The leading coefficient is negative.
- (e) One of the real roots is x = 2.
- (f) One of the real roots is x = -2.
- (g) One of the roots has multiplicity 2.
- (h) Two of the roots have multiplicity 2.

Part B: Complete the statement: The polynomial function above has _____ imaginary roots.

Using synthetic division to find roots <u>https://www.youtube.com/watch?v=D_I11k2DfCg</u> <u>https://www.youtube.com/watch?v=paq5VWwXHp</u> <u>8</u> Graphing and Roots

https://www.youtube.com/watch?v=e_EttLeQblY

4. Given the function $b(x) = 2x^3 - 3x^2 - 9x + 10$

<u>Part A:</u> Use synthetic division to show that (x + 2) is a factor of the function *b*. Show all work

<u>Part B:</u> Identify the zeroes of the function.

<u>*Part C:*</u> Rewrite the polynomial in factored form.

5. Given the function $q(x) = x^3 - 4x^2 - 11x + 30$. **Part A:** Is (x-3) a factor of q(x)? Explain.

Part B: Identify the zeroes of the function q.

<u>Part C:</u> Rewrite the polynomial in factored form.

A.REI.11 Learning Target: I can identify the points of intersection of two or more functions. Useful Links/Videos for this Standard http://www.rasmus.is/uk/t/F/Su52k03.htm http://www.instructables.com/id/How-to-Find-the-Intersecting-Points-of-Two-Functio/

6. *Part A:* Create a table with x, f(x) and g(x) and then identify the points of intersection of the

functions.
$$f(x) = x^4 + 2x^2 - 4$$

$$g(x) = x^5 - x^3 - 4$$

x	f(x)	g(x)
-3		
-2		
-1		
0		
1		
2		
3		

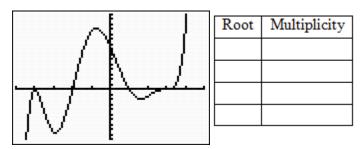
<u>Part B:</u> Explain why a table may not be the best way to find the points of intersection of two functions.

7. Use a graphing calculator to find the approximate intersection(s) to the nearest tenth.

$$p(x) = x^{2} + 3x - 1$$
$$q(x) = x^{4} - 4x^{2} + 3x$$

8. Use a graphing calculator to find the approximate intersection(s) to the nearest tenth.

$$A(x) = x^3 + 3x^2 - 9$$

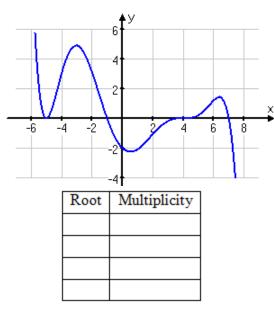

$$B(x) = x^2 + 2x - 8$$

9. Justin is at the range shooting flying discs to practice shooting at moving objects. The height in meters of a disc **t** seconds after launch is modeled by the equation $H(t) = -5t^2 + 32t + 2$. The path of Justin's bullet (with the same units) is modeled by the equation B(t) = 31.5t + 1. A physicist graphs the two equations and finds two solutions: (-0.4, -11.6) and (0.5, 16.75). Explain why one solution is irrelevant and what the second solution means in terms of the given situation.

10. The revenue (in thousands of dollars) for a company producing flying drones is given by $R(x) = -20x^2 + 50x + 2$, where *x* is the number of drones manufactured and sold. The cost of drone production is given as $C(x) = -x^3 + 20x^2 - 10x + 25$. Company analysts find three solutions to this system and decide (18.89, 232.89) is the most financially feasible. Explain the meaning of the point of intersection.

F.IF.4 Learning Target: I can interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship Useful Links/Videos for this Standard https://www.khanacademy.org/math/algebra/algebra -functions/positive-negative-increasing-decreasingintervals/v/increasing-decreasing-positive-andnegative-intervals http://www.coolmath.com/precalculus-reviewcalculus-intro/precalculus-algebra/11-graphingincreasing-decreasing-01

11. The graph below is k(x). <u>*Part A:*</u> Identify the roots and their multiplicities to fill in the table below


<u>Part B:</u> Fill in the correct bubble to describe the given interval of the graph as constant, increasing or decreasing.

Interval	Constant	Increasing	Decreasing
(-∞, -4)	0	0	0
(-3, -1)	0	0	0
(-1, 1)	0	0	0
(3, ∞)	0	0	0

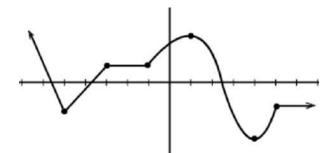
<u>Part C:</u> Fill in the correct bubble to describe the given interval of the graph as positive or negative.

Interval	Positive $(y > 0)$	Negative (y < 0)
x < - 2	0	0
-2 < x < 1	0	0
1 < x < 3	0	0
x > 3	0	0

12. The graph below is M(x). <u>*Part A:*</u> Identify the roots and their multiplicities to fill in the table below

<u>Part B:</u> Label each point as a minimum or maximum.

Point	Minimum	Maximum
(-5,0)	0	0
(-3, 5)	0	0
(0.5, 2.1)	0	0
(6.5, 1.5)	0	0


<u>**Part C:**</u> Fill in the correct bubble to describe the given interval of the graph as positive or negative.

Interval	Positive $(y > 0)$	Negative $(y < 0)$
(-5, -1)	0	0
(7,∞)	0	0

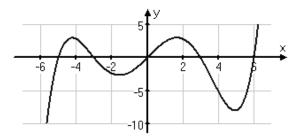
<u>Part B:</u> Fill in the correct bubble to describe the given interval of the graph as constant, increasing or decreasing.

Interval	Constant	Increasing	Decreasing
-2 < x < 0	0	0	0
<i>x</i> > 7	0	0	0

13. The graph below is w(x).

<u>Part A:</u> Fill in the correct bubble to describe the given interval of the graph as constant, increasing or decreasing.

Interval	Constant	Increasing	Decreasing
$(-\infty, -5)$	0	0	0
(-3, -1)	0	0	0
(-1, 1)	0	0	0
(5, ∞)	0	0	0


<u>Part B:</u> Fill in the correct bubble to describe the given interval of the graph as positive or negative.

Interval	Positive $(y > 0)$	Negative $(y < 0)$
x < - 2	0	0
-2 < x < 1	0	0
1 < x < 3	0	0
x > 3	0	0

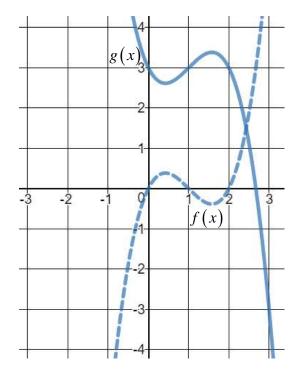
<u>*Part C:*</u> Label each point as a minimum or maximum.

Point	Minimum	Maximum
x = -5	0	0
<i>x</i> = 1	0	0
<i>x</i> = 4	0	0

14. Choose ALL true statement about the polynomial graphed.

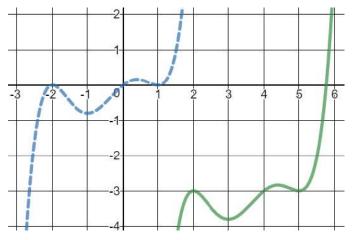
- (a) The domain of the function is $(-\infty,\infty)$
- (b) The range of the function is $(-\infty, \infty)$
- (c) The domain of the function is $[-7,\infty)$
- (d) The range of the function is $[-7,\infty)$
- (e) Relative maximum occurs at (-4.1, 3)
- (f) Relative minimum occurs at (0, 0)
- (g) Relative minimum occurs at (5, -8)
- (h) There are two relative maximums
- (i) There are two relative minimums
- (j) There is an absolute minimum
- (k) The function is increasing on interval (-4, 0)
- (1) The function is decreasing on interval(2, 4)
- (m)There are two increasing intervals
- (n) There are two decreasing intervals
- (o) as $x \to \infty, y \to \infty$
- (p) as $x \to -\infty, y \to \infty$
- (q) The polynomial is degree 3 (cubic)
- (r) The polynomial is degree 4 (quartic)
- (s) The polynomial is degree 5 (quintic)
- (t) The leading coefficient is negative.

F.IF.9 Learning Target: *I can compare properties* of two functions each represented in a different way. Useful Links/Videos for this Standard https://www.varsitytutors.com/high_school_mathhelp/transformations-of-polynomial-functions https://www.khanacademy.org/math/algebra2/manipu lating-functions/stretchingfunctions/e/shifting_and_reflecting_functions see also previous standard's links

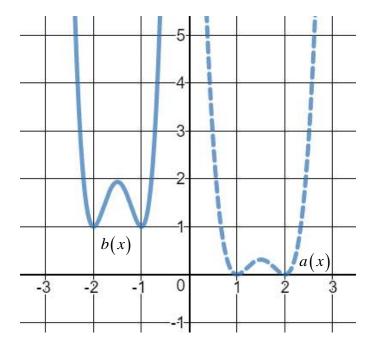

15. The function $y = x^3$ is transformed to:

<u>**Part A:**</u> $f(x) = 5x^3 - 8$ Describe in words how the function has been transformed:

<u>**Part B:**</u> $g(x) = -x^3 + 4$. Describe in words how the function has been transformed.


<u>**Part C:**</u> $p(x) = \frac{1}{2}(x-2)^3$. Describe in words how the function has been transformed.

<u>**Part D:**</u> $q(x) = (x + 4)^3 - 7$. Describe in words how the function has been transformed. 16. The parent function f(x) is translated to g(x).



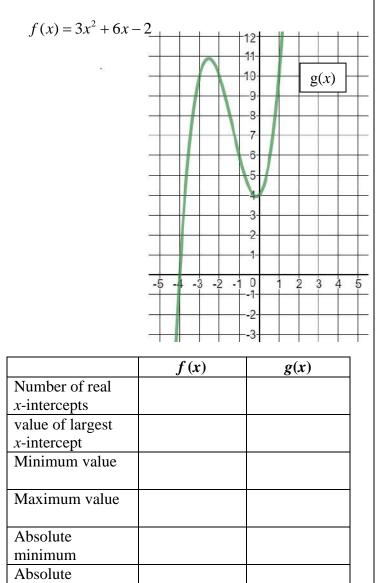
Select all transformations that apply.

- (a) Reflected over the *x*-axis
- (b) Vertically stretched by a factor of 2
- (c) Vertically compressed by a factor of $\frac{1}{3}$
- (d) Vertical shift up 3 units
- (e) Vertical shift down 2 units
- (f) Horizontal shift left 2 units
- (g) Horizontal shift right 1 unit
- 17. If the dotted graph is f(x), how would you write its transformation to the solid graph?

The parent function a(x) is translated to b(x).

Select all transformations that apply.

- (a) Reflected over the *x*-axis
- (b) Vertically stretched by a factor of 3
- (c) Vertically compressed by a factor of $\frac{1}{5}$
- (d) Vertical shift up 1 unit
- (e) Vertical shift down 2 units
- (f) Horizontal shift left 3 units
- (g) Horizontal shift right 4 units


Choices for #17

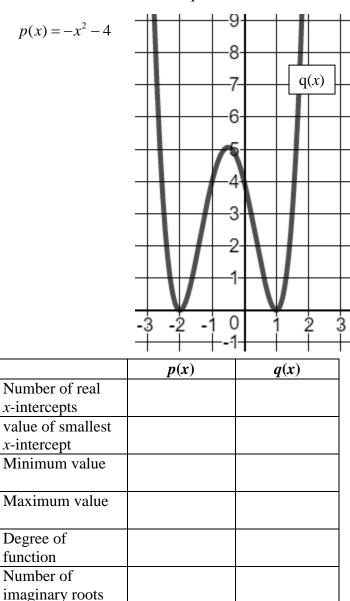
[A] f(x-3)+4[B] f(x+3)-4

[C]
$$f(x-4)-3$$

[D] f(x+4)-3

18. Examine the functions below, fill out the chart and answer the questions.

Which function has an increasing rate of change over the interval $(-\infty, -3)$?


Which function has a decreasing rate of change over the interval (-2, 0)?

What is the indicated end behavior? $x \rightarrow \infty, f(x) \rightarrow ___$

 $x \to \infty, g(x) \to ____$

maximum

19. Examine the functions below, fill out the chart and answer the questions.

Which function has an increasing rate of change over the interval (-2, 0)?

Which function has a decreasing rate of change over the interval $(1, \infty)$?

What is the indicated end behavior? $x \rightarrow -\infty, p(x) \rightarrow ____$

 $x \to -\infty, q(x) \to _$