U10 Day 2 Notes Positive and Negative on an Interval

F-IF.4: I can interpret key features of graphs including domain and range, intercepts; intervals where the function is increasing, decreasing, positive, or negative, and symmetry.

> Positive intervals mean they are Above Negative intervals mean they are BOLOW

Directions: For each of the following graphs determine the intervals on which the graph is positive or negative.

1.

Steps

- 1. Identify the x-intercepts
- 2. Label the parts above the x-axis *Positive*
- 3. Label the parts below the x-axis *Negative*
- 4. Write interval notation

Positive Intervals:

Negative Intervals:

2.

Negative Intervals:

Negative Intervals:

4. The function $f(x) = x^2 - 2x - 3$ is graphed as shown.

For each interval in the box, determine if f(x) is positive or negative.

$$(-\infty,-1)$$
Pos
 $(-1,3)$

9. The function $f(x) = -x^2 - 2x + 8$ is graphed as shown.

For each interval in the box, determine if f(x) is positive or negative.

$$(-\infty, -4)$$
 $(-4, 2)$ $(2, \infty)$ Neg

10. The function $f(x) = x^2 - x - 2$ is graphed as shown.

For each interval in the box, determine if f(x) is positive or negative.

1

11. The function $f(x) = -x^2 + 2x - 1.25$ is graphed as shown.

For each interval in the box, determine if f(x) is positive or negative.

