Quiz - LIMITS AND CONTINUITY

- 1. The graph of which of the following equations has y = 1 as an asymptote?
 - (A) $y = \cos x$ (B) y = e (C) $y = -\frac{1}{5}$ (D) $y = -\frac{1}{5}$ (E) $y = -\ln x$
- 2. If $\lim_{x \to a} f(x) = L$, where L is a real number, which of the following must be true?
 - I. f(a) = L II. $\lim_{x \to a^{-}} f(x) = L$ III. $\lim_{x \to a^{+}} f(x) = L$ (A) I only (B) I and II (C) I and III (D) II and III (E) I, II, and III
- 3. If the graph of $y = \frac{ax+b}{x+c}$ has a horizontal asymptote y = -2, a vertical asymptote x = 4, and an *x*-intercept of 1.5, then a b + c =
 - (A) -3 (B) 1 (C) 5 (D) -9 (E) -1

4. Let $f(x) = \begin{cases} e & , -\infty < x \le 0 \\ |x-2|+k & , 0 < x < \infty \end{cases}$. Find k so that f is continuous everywhere.

- (A) -1 (B) 0 (C) (D) 1 (E) e
- 5. If $f(x) = \frac{1-x}{x-2}$, then $\lim_{x \to 2^-} f(x)$, is (A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) $-\infty$ (D) ∞ (E) -1
- 6. On what interval *must* the function $g(x) = 2x^2 + 7x 1$ intersect the line y = 7?
 - (A) [-8, -6] (B) [-4, -1] (C) [0, 2] (D) [6, 9] (E) [4, 5]

7.
$$\lim_{x \to -\infty} \frac{2x+3}{\sqrt{x^2+x+1}}$$
 is
(A) -2 (B) -1 (C) 0 (D) 2 (E) DNE

- 8. If f is continuous over the set of real numbers and f is defined as $f(x) = \frac{x^2 3x + 2}{x 2}$ for all $x \neq 2$ then f(2) =
 - (A) -2 (B) -1 (C) 0 (D) 1 (E) 2
- 9. $\lim_{x \to \infty} \frac{5x^2 + 7x 3}{2 + 3x 11x^2} =$
 - (A) $-\frac{3}{2}$ (B) $-\frac{5}{11}$ (C) 0 (D) $\frac{7}{3}$ (E) DNE
- 10. Let f be defined as $f(x) = \begin{cases} \sqrt{x} + k & , x < 1 \\ \ln(x) & , x \ge 1 \end{cases}$ for a constant, k.

For what value of k will $\lim_{x\to 1^{-}} f(x) = \lim_{x\to 1^{+}} f(x)$? (A) -2 (B) -1 (C) 0 (D) 1 (E) DNE

11. Let
$$f(x) = \begin{cases} \frac{-}{4} & \text{, if } x \neq 1 \\ 4 & \text{, if } x = 1 \end{cases}$$
. Which of the following statements is(are) true?
I. $\lim_{x \to 1} f(x)$ exists. II. $f(1)$ exists. III. f is continuous at $x = 1$.

1. $\lim_{x \to 1} f(x)$ exists.	II. $f(1)$ exists.	III. f is continuous at $x =$
(A) I only(D) none of them	(B) II only(E) all of them	(C) I and II