

 ​

 ​ ​

 ​ ​ ​ ​

CodeHS
AP Computer Science Principles Cyber Course

Syllabus

Introduction

AP Computer Science Principles is the newest AP® course from the College Board. This course
introduces students to the foundational concepts of computer science and explores the impact
computing and technology have on our society.

With a unique focus on creative problem solving and real-world applications, the CodeHS AP
Computer Science Principles course gives students the opportunity to explore several important
topics of computing using their own ideas and creativity, use the power of computing to create
artifacts of personal value, and develop an interest in computer science that will foster further
endeavors in the field.

Course Overview

Prerequisites: There are no official prerequisites for the CodeHS AP Computer Science
Principles course. This course is meant to be a first-time introduction to computer science and
does not require students to come in with any computer programming experience. However, we
recommend that students take our Introduction to Computer Science prior to our AP courses
(more info at codehs.com/library). Students who have completed our Intro to CS course will be
able to apply knowledge of concepts covered in the Intro course to the more advanced setting of
the AP courses. We also recommend that students complete a first-year high school algebra
course prior to taking this course. Students should be comfortable with functions and function
notation such as f(x) = x + 2 as well as using a Cartesian (x, y) coordinate system to represent
points in a plane.

Overarching Goals:
● Increase and diversify participation in computer science
● Students, regardless of prior experience in computing, will develop confidence using

computer science as a tool to express themselves and solve problems, and this
confidence will prepare them for success in future endeavors in the field of computer
science

1

http://codehs.com/library

 ​ ​ ​

 ​

 ​

 ​

 ​

● Students will understand the core principles of computing, a field which has and
continues to change the world

● Students will be able to develop computational artifacts to solve problems, communicate
ideas, and express their own creativity

● Students will be able to collaborate with others to solve problems and develop
computational artifacts

● Students will be able to explain the impact computing has on society, economy, and
culture

● Students will be able to analyze existing artifacts, identify and correct errors, and explain
how the artifact functions

● Students will be able to explain how data, information, or knowledge is represented for
computational use

● Students will be able to explain how abstractions are used in computation and modeling
● Students will learn to be informed and responsible users of technology

Learning Environment: The course utilizes a blended classroom approach. The content is a mix
of web-based and physical activities. Students will write and run code in the browser, create
digital artifacts, and engage in in-person collaborative exercises with classmates all with a focus
of Cybersecurity. Teachers utilize tools and resources provided by CodeHS to leverage time in
the classroom and give focused 1-on-1 attention to students. Each unit of the course is broken
down into lessons. Lessons consist of video tutorials, short quizzes, example programs to
explore, written programming exercises, free response exercises, collaborative creation projects,
and research projects.

Programming Environment: Students write and run programs in the browser using the CodeHS
editor. Students will be able to write both text-based and block-based JavaScript programs, and
students will use Processing.js to create graphical programs. Students gain programming
experience early on in the course that will enable them to explore the rest of the course topics
through computational thinking practices.

Course Resources: Access to a computer and high-speed internet is required. There is also an
online textbook available for many modules and topics which can be accessed through the
lesson plans or at https://codehs.gitbooks.io/introcs/content/

Quizzes: At the end of most units, students take a summative multiple choice unit quiz in the style
of the AP Exam that assesses their knowledge of the concepts covered in the unit. The course
also provides an AP Test Practice unit with a cumulative AP Practice Multiple Choice Test.

2

https://codehs.gitbooks.io/introcs/content/
https://Processing.js

​ ​

​

Course Objectives

This course is based directly on the College Board AP Computer Science Principles Framework.
We recommend reading the curriculum framework here for context. The main course objectives
are summarized below in the six computational thinking practices and five big ideas for the
course.

Computational Thinking Practices:
The six computational thinking practices represent important aspects of the work that computer
scientists engage in, and are denoted here by P1 through P6:

● Practice 1: Computational Solution Design
○ Design and evaluate computational solutions for a purpose.

● Practice P2: Algorithms and Program Development
○ Develop and implement algorithms.

● Practice P3: Abstraction in Program Development
○ Develop programs that incorporate abstractions.

● Practice P4: Code Analysis
○ Evaluate and test algorithms and programs.

● Practice P5: Computing Innovations
○ Investigate computing innovations.

● Practice P6: Responsible Computing
○ Contribute to an inclusive, safe, collaborative, and ethical computing culture.

Big Ideas:
The five big ideas of the course encompass foundational ideas in the field of computer science,
and are denoted here by B1 through B5:

● Big Idea 1: Creative Development (CRD)
When developing computing innovations, developers can use a formal, iterative design
process or experimentation. While using either approach, developers will encounter
phases of investigating and reflecting, designing, prototyping, and testing. Additionally,
collaboration is an important tool to use at any phase of development because
considering multiple perspectives allows for improvement of innovations.

● Big Idea 2: Data (DAT)
Data is central to computing innovations because it communicates initial conditions to
programs and represents new knowledge. Computers consume data, transform data,
and produce new data, allowing users to create new information or knowledge to solve
problems through the interpretation of this data. Computers store data digitally, which
means that the data must be manipulated in order to be presented in a useful way to the
user.

3

https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-conceptual-framework-2020-21.pdf?course=ap-computer-science-principles

 ​ ​

● Big Idea 3: Algorithms and Programming (AAP)
Programmers integrate algorithms and abstraction to create programs for creative
purposes and to solve problems. Using multiple program statements in a specified order,
making decisions, and repeating the same process multiple times are the building blocks
of programs. Incorporating elements of abstraction, by breaking problems down into
interacting pieces, each with their own purpose, makes writing complex programs easier.
Programmers need to think algorithmically and use abstraction to define and interpret
processes that are used in a program.

● Big Idea 4: Computing Systems and Networks (CSN)
Computer systems and networks are used to transfer data. One of the largest and most
commonly used networks is the Internet. Through a series of protocols, the Internet can
be used to send and receive information and ideas throughout the world. Transferring
and processing information can be slow when done on a single computer but leveraging
multiple computers to do the work at the same time can significantly shorten the time it
takes to complete tasks or solve problems.

● Big Idea 5: Impact of Computing (IOC)
Computers and computing have revolutionized our lives. To use computing safely and
responsibly, we need to be aware of privacy, security, and ethical issues. As
programmers, we need to understand how our programs will be used and be responsible
for the consequences. As computer users, we need to understand how to protect
ourselves and our privacy when using a computer.

The AP Create Performance Task:
The through course assessment is a performance task designed to gather evidence of student
proficiency in the learning objectives. The AP Create Performance Tasks (PT) is an in-class
assessment, administered by the teacher, that allows students to exemplify their learning through
an authentic, “real-world” creation. In the Create Performance Task, students will design and
implement a program to solve a problem, enable innovation, explore personal interest, or express
creativity. Their development process should include exploration, investigation, reflection, design,
implementation, and testing your program. For more information about the AP Create
Performance Task, refer to the curriculum framework.

Students will gain the experience necessary to complete the Create Performance Task in class.
Each unit comes with practice PTs in which students will research topics in computing, and create
their own digital artifacts. Sufficient time is set aside in the course for students to prepare for and
complete the Create Performance Task.

The AP Exam:
This course will prepare students for the multiple-choice AP Computer Science Principles
examination. Each lesson comes with quizzes to test essential knowledge for the AP Exam. Each

4

https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-conceptual-framework-2020-21.pdf?course=ap-computer-science-principles

​

​

​

unit includes a cumulative AP style multiple-choice exam to test understanding of the concepts in
the unit and provide immediate feedback to the student.

Course Breakdown

Unit 1: Introduction to Programming with Karel the Dog (3 weeks, 15 hours)
This course begins with a strong focus on programming in order to allow students to create
computational artifacts early on in the course. Students will be able to use their knowledge of
programming to explore future topics in the course.

We use Karel, a dog that only knows how to move, turn left, and place tennis balls in his world, to
show students what it means to program, and allow students to focus on computational
problem-solving. Students will learn about the need for programming languages, the uses of
programs, how to write programs to solve computational problems, how to design algorithms,
how to analyze and compare potential solutions to programming problems, and learn the value
and challenges involved in collaborating with others to solve programming problems. Students
will use the grid coloring functionality of Karel to create a digital painting.

Subsection EKs Lessons / Topics

Abstraction AAP-3.B.1 AAP-3.B.7
AAP-3.B.2 CRD-2.G.1

Procedural Abstraction
Modularity

AAP-3.B.3 DAT-1.A.2 Program Reuse
Lessons: AAP-3.B.4 DAT-1.A.5 Digital Data (Bits)
Abstraction AAP-3.B.6 Reducing Complexity

Programming Style
CRD-2.G.1 CRD-2.B.5

Lessons: CRD-2.G.2 AAP-3.D.1 Program Documentation

Intro to Programming AAP-2.M.1 AAP-3.D.2 Using Existing Code and Libraries

Super Karel AAP-2.M.3 AAP-3.D.3 APIs

Ultra Karel CRD-2.B.1 AAP-3.D.4 Commenting Code

Top-Down Design
Commenting Your Code

CRD-2.B.2 AAP-3.D.5

Control Structures

AAP-2.G.1 If/Else Statements (Selection)
Lessons: AAP-2.J.1 For Loops and While Loops
If/Else Statements
For Loops
While Loops in Karel

AAP-2.K.1 (Iteration)

5

​

​

 ​

Debugging Strategies
CRD-2.I.1 Logic Errors
CRD-2.I.2 Syntax Errors

Lessons: CRD-2.I.3 Run-Time Error
Functions in Karel CRD-2.I.5 Testing
Debugging Strategies

AAP-2.A.4
Designing Algorithms AAP-2.M.2 Sequencing, Selection, Iteration

AAP-2.B.1 AAP-4.A.2 Clarity and Readability

Lessons: AAP-2.B.2 AAP-4.A.4 Using Existing Algorithms

Karel Algorithms AAP-2.B.6 AAP-4.A.5 Optimization and Efficiency
AAP-2.B.7 AAP-4.A.6

Example Activities and Big Idea/Computational Thinking Practice
The Two Towers: In this program, students have Karel build two towers of tennis balls. Each
tower should be 3 tennis balls high. In the end, Karel should end up on top of the second
tower, facing East. Students need to write at least 3 functions in order to solve this problem.
This activity requires students to design and create functions for repeated processes within
their program. Students need to consider top-down design and decomposition through the
following questions:

● How can you break this problem down into smaller problems?
● What is a subtask that Karel needs to do more than once in this problem?

[Big Idea AAP][Computational Thinking Practice 1]

Unit 2: Practice PT: Pair-Programming Paint (3 days, 3 hours)
Students will use the grid coloring functionality of Karel to create a digital image. They will then
embed this Karel program into their personal website portfolio.

Subsection EKs Lessons / Topics

Collaboration and
Communication

CRD-1.A.3 CRD-2.F.7
CRD-1.A.4 CRD-2.G.1
CRD-1.B.2 CRD-2.G.3
CRD-1.C.1 CRD-2.G.4
CRD-2.F.5
CRD-2.G.5
CRD-2.F.6 CRD-2.H.1

CRD-2.H.2

Collaboration
Diverse Perspectives
Bias Avoidance
Pair-Programming
Design and Planning
Program Documentation
Acknowledgement of Reused Code

Example Activity and Big Idea/Computational Thinking Practice

6

 ​

​

Create Your Own UltraKarel Image: Following the milestones and the pseudocode plan that
students have laid out, students use pair-programming to write the code for their final project.
They then test their code along the way to make sure they have solved each milestone. This
activity allows students to develop something completely unique with their programming skills
and implement a successful algorithm of their own design.

Students then reflect upon and answer the following questions:

1. Identify the programming language and purpose of your program.

2. Describe the incremental and iterative development process of your program. How did you
divide the program into smaller tasks and make a plan to complete them all?

3. Describe the difficulties and/or opportunities you encountered and how they were resolved
or incorporated.

4. Identify an algorithm that is fundamental for your program to achieve its intended purpose
and includes two or more additional algorithms.

5. Describe how each algorithm within your selected algorithm functions independently, as well
as in combination with others, to form a new algorithm that helps to achieve the intended
purpose of the program.

6. Identify an abstraction you developed, and explain how your abstraction helped manage the
complexity of your program.
[Big Idea CRD][Computational Thinking Practice 2]

Unit 3: Programming with JavaScript (2 weeks, 10 hours)
This unit introduces students to the basics of JavaScript, including variables, user input, control
structures, functions with parameters and return values, and basic graphics, how to send
messages to objects.

Subsection EKs Lessons / Topics

Programming
Languages

Lessons:
What is Code?
Uses of Programs

AAP-2.A.2
AAP-2.A.3
CRD-1.A.1
CRD-1.A.2
CRD-2.B.1

What is Programming?
Pseudocode
Programming Languages
Computing Innovations

7

​

​

​

 ​ ​ ​ ​ ​

 ​ ​

 ​

Variables

Lessons:
Variables

AAP-1.A.1 AAP-1.B.2
AAP-1.A.2 AAP-1.B.3
AAP-1.A.3 DAT-1.A.1
AAP-1.A.4
AAP-1.B.1

Variable Names
Assignment Operators
Data Types
Variables as Abstractions

CRD-2.B.4
AAP-2.B.3
CRD-2.I.5 AAP-2.B.4
CRD-2.J.1 AAP-2.B.5 Program Behavior

Arithmetic Expressions CRD-2.J.2 AAP-2.C.1
CRD-2.J.3 AAP-2.C.2

Testing using Inputs
Arithmetic Expressions

AAP-2.A.1 Order of Operations
Lessons: AAP-2.C.3 Modulus
Basic Math in JavaScript AAP-2.A.2 String Concatenation

AAP-2.C.4
AAP-2.A.3 AAP-2.D.1
AAP-2.A.4
AAP-2.D.2

User Input
AAP-1.C.4 CRD-2.C.5 Strings
AAP-3.A.6 CRD-2.C.6 User Input

Lessons: AAP-3.A.9 CRD-2.D.2 Program Output
User Input CRD-2.C.2 Events
Mouse Events: Mouse Clicked CRD-2.C.3 Mouse and Key Events
Key Events

Example Activity and Big Idea/Computational Thinking Practice
Computing Innovations (as part of Uses of Programs lesson): In this activity, students perform
an online search for examples of computing innovations that have had an impact on society,
economy, or culture. The computing innovations must consume, produce, and/or transform
data. A computing innovation can be a physical object like a self-driving car, non-physical
software like a picture editing software, or a non-physical concept like e-commerce.

Students
● practice searching and evaluating sources relevant to computing innovations
● write the definition of computing innovation in their own words
● list 5 items that ARE computing innovations and 5 items that are NOT computing

innovations. For each one, explain the reason why it is or is not a computing innovation
● identify the data used in at least one computing innovation and explain how the data is

consumed, produced, or transformed by the given computing innovation. [Computing
Innovation 1, Prompt B][Big Idea IOC][Computational Thinking Practice 5]

Unit 4: JavaScript Control Structures (2 weeks, 10 hours)

8

​

​

​

 ​

In this unit, students learn how to use booleans and logical operators with control structures to
make more advanced programs in JavaScript.

Subsection EKs Lessons / Topics

Comparison Operators

Lessons:
Booleans
Comparison Operators

AAP-2.E.1
AAP-2.F.4
AAP-2.E.2 AAP-2.F.5
AAP-2.F.1
AAP-2.F.2
AAP-2.F.3

Booleans
Relational Operators
Operands

Selection

Lessons:
If Statements
Random Numbers
Applying Conditionals

AAP-2.G.1 AAP-2.I.2
AAP-2.H.1 AAP-2.L.3
AAP-2.H.2 AAP-2.L.4
AAP-2.H.3 AAP-3.E.2
AAP-2.I.1

Selection
Conditional Statements
Nested Conditionals
Equivalent Boolean Statements
Random Numbers
Password Validation

Iteration

Lessons:
While Loops

AAP-2.K.2 AAP-2.L.1
AAP-2.K.3 AAP-2.L.2
AAP-2.K.4 AAP-2.L.5
AAP-2.K.5

Iteration
Loops
Different but Equivalent Algorithms

Example Activity and Big Idea/Computational Thinking Practice
Create a Password Prompt: Students write a program that uses conditional statements to verify
that a user entered password meets minimum criteria. If their password is too short it will
reprompt once. Once it is long enough it will ask the user to verify the password. This activity
requires that students use multiple program statements and nested if statements in a specific
order to solve a problem.
[Big Idea AAP][Computational Thinking Practice 2]

Unit 5: Functions and Parameters (2 weeks, 10 hours)
In this unit, students learn to write reusable code with functions and parameters.

Subsection EKs Lessons / Topics

Functions and
Parameters

CRD-2.C.6 AAP-3.A.3
CRD-2.D.2 AAP-3.A.4
CRD-2.B.3 AAP-3.B.5

User and Application Input
Program Output
Procedures

9

​

 ​

 ​

​

Lessons:
Functions and Parameters 1
Functions and Parameters 2
Functions and Return Values 1
Functions and Return Values 2

CRD-2.C.4 AAP-3.C.1
AAP-3.A.1
AAP-3.C.2
AAP-3.A.2
AAP-2.M.2

Parameters
Return Values
Using Existing Algorithms

Example Activity and Big Idea/Computational Thinking Practice
Pool Table: Students write a program with a function that draws a pool ball. This function
should take as parameters, the color, the number that should go on the pool ball, and the
location of the center of the pool ball. Students need to consider the function abstractly as a
means for taking specific data via the parameters and creating a unique graphical output based
on those inputs.
[Big Idea DAT][Computational Thinking Practice 3]

Unit 6: Practice PT: Tell a Story (3 days, 3 hours)
In this project, students will write a JavaScript program that tells a graphical story

Example Activity and Big Idea/Computational Thinking Practice
Tell a Story! In this activity, students write a JavaScript program that tells a graphical story in at
least 4 scenes. Following the milestones and the pseudocode plan that students have laid out
prior to this exercise, students write the code for their final project. Along the way, students are
testing their code to identify errors in both their pseudocode algorithm and their program. At
each milestone, students test their code to ensure that the functionality meets the expected
results that were laid out in their plan. After completing the program, students are asked to
reflect and explain how their program functions.
[Big Idea CRD][Computational Thinking Practice 4]

Unit 7: Basic Data Structures (2 weeks, 10 hours)
In this unit, students learn to write reusable code with functions and parameters.

Subsection EKs Lessons / Topics

Basic Data Structures

Lessons:
Intro to Lists/Arrays
Indexing Into an Array
Removing an Element

DAT-1.A.1
AAP-1.A.1
AAP-1.C.1
AAP-1.C.2
AAP-1.C.3
AAP-1.D.6
AAP-1.D.7
AAP-1.D.8

Data Values
Lists and Elements
Indices
List Procedures

10

​

​

​

​

 ​

AAP-2.N.2
AAP-2.N.1

AAP-1.D.1
AAP-1.D.5

Data Abstractions

Lessons:
Adding/Removing From Arrays
Array Length and Looping

DAT-2.E.4
AAP-1.D.2
AAP-1.D.3
AAP-1.D.4
DAT-2.E.2

Data Abstraction
Translating and Transforming Data
Filtering and Cleaning
Patterns

DAT-2.D.4
DAT-2.E.5

Traversing a List

Lessons:
Array Length and Looping
Iterating Over an Array
Removing an Element

DAT-2.D.6 AAP-3.A.5
AAP-2.O.1 AAP-3.A.7
AAP-2.O.2 AAP-3.A.8
AAP-3.C.1 AAP-3.E.1
AAP-3.C.2
AAP-3.A.6
AAP-2.O.3

Extract and Modify Information
Traversing a List
Iteration Statements
Usernames and Passwords

Algorithm Efficiency

Lessons:
Array Length and Looping
Finding an Element in a List

AAP-2.O.4 AAP-4.A.1
DAT-2.D.3 AAP-4.A.3
AAP-2.O.5 AAP-4.A.7
AAP-2.P.1 AAP-4.A.8
AAP-2.P.2 AAP-4.A.9
AAP-2.P.3

Using Existing Algorithms
Search Tools
Linear Search
Binary Search
Algorithm Efficiency
Heuristics

AAP-3.F.1
AAP-3.F.2

SImulation

Lessons:
Simulation

AAP-3.F.3
AAP-3.F.4
AAP-3.F.5
AAP-3.F.6

Simulations as Abstractions
Bias in Simulations
Random Number Generators

AAP-3.F.7
AAP-3.F.8

Example Activity and Big Idea/Computational Thinking Practice
Draw a Barcode: Students write a program to draw a barcode on the screen given an array that
represents the data in the barcode. The array will contain a boolean in it, and if the boolean is
`true`, the program will need to draw a vertical line in that position that runs from the top to the
bottom of the screen. If not, the program will not draw a line. This program development
requires students to use data generated from their bit array and loops and conditionals to
determine where lines are drawn and where they are not drawn.
[Big Idea DAT][Computational Thinking Practice 2]

11

​

​

​

 ​

Unit 8: Digital Information (3 weeks, 15 hours)
In this unit, students will learn about the various ways we represent information digitally. Topics
covered include number systems, encoding data, programmatically creating pixel images,
comparing data encodings, compressing and encrypting data. Students will work in pairs to
develop their own data encryption algorithms and attempt to crack the encryptions of their peers.

Subsection EKs Lessons / Topics

Number Systems

Lessons:
Intro to Digital Information
Number Systems

CRD-2.C.1 DAT-1.A.7
CRD-2.D.1 DAT-1.B.1
CRD-2.J.2 DAT-1.B.2
CRD-2.J.3 DAT-1.B.3
CRD-2.I.4 DAT-1.C.1
DAT-1.A.2 DAT-1.C.2
DAT-1.A.3 DAT-1.C.3
DAT-1.A.4 DAT-1.C.4
DAT-1.A.5 DAT-1.C.5
DAT-1.A.6

Computing Devices
Abstraction
Program Input and Output
Bits and Bytes
Overflow Errors
Range of Value Limits
Binary and Decimal Systems

Data Compression

Lessons:
Data Compression
Lossy Compression

DAT-1.A.8 DAT-1.D.4
DAT-1.A.9 DAT-1.D.5
DAT-1.A.10 DAT-1.D.6
DAT-1.D.1 DAT-1.D.7
DAT-1.D.2 DAT-1.D.8
DAT-1.D.3

Lossless Data
Lossy Data
Digital and Analog Data

Steganography

Lessons:
Introduction to Steganography
Ethics of Steganography

IOC-1.F.2
IOC-1.F.8
IOC-1.F.9
IOC-1.F.11

What is Steganography
Hiding and Extracting Messages
Government Surveillance

Example Activity and Big Idea/Computational Thinking Practice
Ethics of Steganography: Students will explore the impact that computing has on privacy and
surveillance by researching different ethical issues around personal and government tracking.
Students will answer questions as to how technology has made it easier for companies and the
government to track criminal behavior as well as discuss the ethical impact of this type of
tracking.
[Big Idea IOC][Computational Thinking Practice 6]

Unit 9: Practice PT: Steganography (3 days, 3 hours)
In this project, students will be implementing a form of cryptography known as Steganography.
Students can choose this practice PT or the following.

12

 ​

​

​

 ​

Example Activity and Big Idea/Computational Thinking Practice
Secret Image: Steganography- Students use a form of cryptography called steganography to
hide a secret image inside of a cover image. They need to develop two functions that create
filters, with one encoding and the other decoding. They are required to use a solid degree of
abstraction since several functions will be required for each part of the encoding and decoding
process. This also continues their consideration and discussions of privacy issues in
computing.
[Big Idea IOC][Computational Thinking Practice 3]

Unit 10: Encryption (1 weeks, 5 hours)
In this unit, students will learn about the various ways we encrypt information. Topics covered
include encoding and decrypting Caesar and Vigenere ciphers, and understanding symmetric
and public key encryption.

Subsection EKs Lessons / Topics

Encryption CRD-1.A.3
AAP-2.D.1 Introduction to Caesar

Lessons: AAP-2.H.1 Decrypting and Breaking Caesar

Caesar AAP-3.E.2 Vigenere Cipher

Vigenere

Symmetric and Public
Key Encryption

Lessons:
Diffie-Hellman
RSA Encryption

AAP-4.B.1
AAP-4.B.2
AAP-4.B.3
IOC-2.B.1
IOC-2.B.5

Diffie-Hellman Key Exchange
Public Key Programming
RSA Encryption
RSA Example

Example Activity and Big Idea/Computational Thinking Practice
Break Caesar's Cipher: Students explorer the concept of ciphers and how to write code that
can encode and decode ciphers such as a Caesar Cipher. Before moving into more complex
ciphers, students explore how a computer can easily break a Caesar Cipher. Students are
given an encrypted passage and a tool that can shift letters. They then explore different shifts
until the phrase becomes legible. In this process, students can see how there are a limited
number of shifts that can be applied and through brute strength, the encrypted message can
be broken fairly quickly.

13

 ​

 ​

​

​

[Big Idea IOC][Computational Thinking Practice 2]

Unit 11: Practice PT: Create Your Own Image Filter (3 days, 3 hours)
In this project, students pair up with a partner to develop a novel image filter that can be applied
to any digital image of their choosing. They will describe their image filter, and their development
process, and embed their image filter along with its description on their personal portfolio
website. Students can choose this practice PT or the previous.

Example Activity and Big Idea/Computational Thinking Practice
Create an Image Filter: In this activity, students work with a partner to develop functions for
creating unique mage filters. They share their creative solutions designs with others and
incorporate feedback for improvement.
[Big Idea CRD][Computational Thinking Practice 1]

Unit 12: The Internet (2 weeks, 10 hours)
This unit explores the structure and design of the internet, and how this design affects the
reliability of network communication, the security of data, and personal privacy. Students will
learn about the protocols and algorithms used on the internet and the importance of
cybersecurity. Students will choose an innovation that was enabled by the Internet and explore
the positive and negative impacts of their innovation on society, economy, and culture. Students
will develop a computational artifact that illustrates, represents, or explains the innovation’s
purpose, its function, or its effect.

Subsection EKs Lessons / Topics

Internet Hardware and
Addresses

Lessons:
Welcome to the Internet
Internet Hardware
Internet Addresses

CSN-1.A.1 CSN-1.A.8
CSN-1.A.2 CSN-1.B.3
CSN-1.A.3 CSN-1.B.4
CSN-1.A.4
CSN-1.A.7

Protocols
Computing Devices
Computer Networks
Bandwidth

Routing

Lessons:

CSN-1.A.5 CSN-1.E.2
CSN-1.A.6 CSN-1.E.3
CSN-1.B.5 CSN-1.E.4
CSN-1.B.6 CSN-1.E.5

Routing
Scalability
Fault-Tolerance
Redundancy

14

​

​

​

 ​

 ​ ​

Routing CSN-1.B.7 CSN-1.E.6
CSN-1.E.1 CSN-1.E.7

Packets and Protocols

Lessons:
Packets and Protocols

CSN-1.B.1 CSN-1.D.1
CSN-1.B.2 CSN-1.D.2
CSN-1.C.1 CSN-1.D.3
CSN-1.C.2 DAT-2.B.1
CSN-1.C.3 DAT-2.B.3
CSN-1.C.4 DAT-2.B.5

Datastreams
Packets
IP, TCP, UDP
HTTP
Metadata

DAT-2.C.7 CSN-2.A.6 Parallel Systems

Computing Systems
DAT-2.C.8 CSN-2.A.7
CSN-2.A.1 CSN-2.B.1

Scalability of Systems
Sequential Computing

CSN-2.A.2 CSN-2.B.2 Parallel Computing
Lessons: CSN-2.A.3 CSN-2.B.3 Distributed Computing
Sequential, Parallel & Distributed CSN-2.A.4 CSN-2.B.4 Efficiency of Solutions

CSN-2.A.5 CSN-2.B.5 Speedup

IOC-1.A.1 IOC-1.E.2
IOC-1.A.3 IOC-1.E.3
IOC-1.A.4 IOC-1.E.4
IOC-1.A.5 IOC-1.E.5
IOC-1.B.1 IOC-1.E.6 Computing Innovations

Impact of the Internet IOC-1.B.2 IOC-1.F.1
IOC-1.B.3 IOC-1.F.2

Unintended Effects
Impact on Society

IOC-1.B.4 IOC-1.F.3 Rapid Sharing
Lessons: IOC-1.B.5 IOC-1.F.4 Digital Divide
The Impact of the Internet IOC-1.B.6 IOC-1.F.5 Citizen Science
Creative Credit and Copyright IOC-1.C.1 IOC-1.F.6 Crowdsourcing

IOC-1.C.2 IOC-1.F.7 Creative Credit and Copyright
IOC-1.C.3 IOC-1.F.9
IOC-1.C.4 IOC-1.F.10
IOC-1.C.5 IOC-1.F.11
IOC-1.E.1

Example Activity and Big Idea/Computational Thinking Practice
Reflection: Unintended Effects - Students consider the WWW, targeted advertising and
machine learning and data mining as examples of computing innovations. They also learn that
responsible programmers try to consider the unintended ways their computing innovations can
be used and the potential beneficial and harmful effects of these new uses although it may not
be possible for a programmer to consider all the ways a computing innovation can be used.

They then consider Pokemon Go (from the previous video) or research another innovation that
had unintended effects. Students answer in their reflections:

1. What were the intended effects and what were the unintended effects?

15

 ​

​

​

2. Explain beneficial and harmful effects of at least one other computing innovation on
society, economy, or culture.

[Computing Innovation 2, Prompt A][Big Idea IOC][Computational Thinking Practice 5]

Packets and Protocols: The Story of the Internet - In their own words, students tell the story of
downloading an image from a website on the internet. They tell the story step by step of how
their computer finds the relevant server, requests information from the server, and receives it.
Students are required to include distinctions between the internet and the World Wide Web,
such as:

● The World Wide Web is a system of linked pages, programs, and files.
● HTTP is a protocol used by the World Wide Web.
● The World Wide Web uses the Internet.

[Big Idea CSN][Computational Thinking Practice 5]

Unit 13: Cybersecurity (2 weeks, 10 hours)
In this unit, students will learn about the various ways we encrypt information. Topics covered
include encoding and decrypting Caesar and Vigenere ciphers, and understanding symmetric
and public key encryption.

Subsection EKs Lessons / Topics

IOC-1.F.8
IOC-2.A.1 IOC-2.B.6
IOC-2.A.7 IOC-2.B.7
IOC-2.A.8 IOC-2.B.9

Information Security

Lessons:
CIA Triad
Personal security

IOC-2.A.9 IOC-2.B.10
IOC-2.A.11 IOC-2.B.11
IOC-2.A.12
IOC-2.A.13
IOC-2.A.15

Phishing Attacks
Password Authentication
Password Strength
Multi Factor Authentication

IOC-2.B.1
IOC-2.B.2
IOC-2.B.3
IOC-2.B.4

Network Security IOC-2.A.4
IOC-2.B.8 Introduction to Networking

Lessons: IOC-2.B.5 Introduction to the OSI Model

OSI Model IOC-2.B.9 Network Attacks

Network Attacks IOC-2.B.10

16

​

 ​

 ​

Risk

Lessons:
Cybersecurity Risk Model

IOC-2.C.1 IOC-2.C.5
IOC-2.C.2 IOC-2.C.6
IOC-2.C.3 IOC-2.C.7
IOC-2.C.4

Basic Cybersecurity Risk
Assessing
Vulnerabilities
Security Controls

Example Activity and Big Idea/Computational Thinking Practice
Phishing Simulator and Reflection: Students will explore several situations that are designed to
look like possible phishing situations. In each, students decide if the situation is legitimate or
phishing and then receive feedback as to their choice. After the exercise, they then have a
chance to reflect on common characteristics.
[Big Idea IOC][Computational Thinking Practice 6]

Unit 14: Practice PT: Cyber Ethics (3 days, 3 hours)
In this project, students will choose one of four articles on cyber ethics and write a position paper.
Based on that article, they will provide an arguable opinion about who is responsible and why,
and how the culpable party(ies) should be held accountable in the future so that other cities and
their citizens do not suffer the same harms.

Example Activity and Big Idea/Computational Thinking Practice
Develop Your Position: In this activity, students focus on developing their position. They are
asked to pick the best 3 or 4 points from an earlier activity where they listed the Pros and Cons
for their article.

For each point, students are then asked to write a well constructed paragraph that contains the
following:

● A general statement of the position
● An elaboration that references documents and source data
● Past experiences and authoritative testimony
● Conclusion restating the position

[Computing Innovation 3, Prompt C][Big Idea IOC][Computational Thinking Practice 5]

Unit 15: Data (1 week, 5 hours)
In this unit, students will explore using computational tools to store massive amounts of data,
manipulate and visualize data, find patterns in data, and draw conclusions from data. Students
will consider how the modern wealth of data collection has impacted society in positive and
negative ways. Students will work in teams to investigate a question of personal interest and use
public data to present a data-driven insight to their peers. They will develop visualizations to
communicate their findings.

17

​

​

​

 ​

Subsection EKs Lessons / Topics

DAT-2.A.1
DAT-2.D.5
DAT-2.A.2

Visualizing and
Interpreting Data

Lessons:
Getting Started with Data
Visualizing and Interpreting Data

DAT-2.D.6
DAT-2.C.1
DAT-2.E.1
DAT-2.D.1
DAT-2.E.2
DAT-2.D.2
DAT-2.E.3

Filtering and Cleaning Data
Patterns and Trends
Search Tools
Tables, Diagrams and Displays
Interactive Visualizations
Combining Data Sources

DAT-2.D.3
DAT-2.E.5
DAT-2.D.4

DAT-2.A.3
DAT-2.C.2
DAT-2.A.4
DAT-2.C.3

Collecting Data and Data DAT-2.B.1 Metadata

Limitations
DAT-2.C.4
DAT-2.B.2

Correlation
Using a Variety of Sources

DAT-2.C.5 Incomplete or Invalid Data
Lessons: DAT-2.B.3 Bias
Data Collection and Limitations DAT-2.C.6 Surveys, Testing, Interviews

DAT-2.B.4
DAT-2.D.6
DAT-2.B.5
CRD-2.F.3

Personal Data Personal Data Vulnerabilities

Vulnerabilities
What Can you Learn
Cleaning Up Social Media
Information Data Exchange

Lessons: What Can You Learn From an
Unintended Data Sharing Image
Metadata and Data Collection Online Privacy

Example Activity and Big Idea/Computational Thinking Practice
Importance of Metadata: Students consider how metadata can increase the effective use of
data or data sets by providing additional information. They consider the importance of
metadata and reflect on why metadata is important for a data set, how metadata help in finding
specific data, and what metadata should reveal about the data.
[Big Idea DAT][Computational Thinking Practice 5]

18

 ​

Unit 16: Practice PT: Present a Data-Driven Insight (3 days, 3 hours)
In this project, students will work with a partner to answer a question of personal interest using a
publicly available data set. Students will need to produce data visualizations and explain how
these visualizations led to their conclusions. They will develop a computational artifact that
illustrates, represents, or explains their findings, communicate their findings to their classmates.

Example Activity and Big Idea/Computational Thinking Practice
Present a Data-driven Insight: Students consider how the amount of collected data impacts our
lives in ways that require considerable study and reflection for us to fully understand them.
Students explore a question that can be answered by analyzing a dataset. They form a
question and use visualization techniques to analyze the data to answer the question.
[Big Idea DAT][Computational Thinking Practice 6]

Unit 17 & 18: Explore MCQ Practice and Create Performance Task (3 weeks, 15 hours)
This time is set aside for students to prepare for the Explore MCQ and create their AP Create
Performance Task. Students will be given the chance to review course content and practice the
skills necessary to complete the Create Performance Task. The Create PT will be administered
over 12 hours of class time.

Subsection EKs Lessons / Topics

AP CSP Explore Task
Practice

IOC-2.A.2 IOC-2.A.10
IOC-2.A.3 IOC-2.A.14
IOC-2.A.4 IOC-1.F.11
IOC-2.A.5 CRD-1.A.1
IOC-2.A.6 CRD-1.A.2

Artifact Creation
Computing Innovations
Data Input and Output
Data Privacy and Security

Prepare for Create PT ALL

Review Course Content
Incremental Development
Documentation
Debugging
Collaborative Development

Create PT
12 hours of class time to conduct
Create PT

19

 ​

​

Example Activity and Big Idea/Computational Thinking Practice
Create Performance Task: Students develop a program of their choice. Their development
process includes iteratively designing, implementing, and testing their program. Students are
strongly encouraged to work with another student in their class.
[Big Idea AAP][Computational Thinking Practices 1-4]

Unit 19: Review for the AP Exam (1 week, 5 hours)
This unit gives students a review of the topics covered in the course and provides practice
solving AP Exam style multiple-choice questions.

Subsection Lessons / Topics

Prepare for Practice Exam
Review course content
What to expect on the exam

Practice AP Exam

Cumulative Final AP Review
Multiple Choice Test

Unit 20: Creative Development (Remainder of the school year, 2-4 weeks, 10-20 hours)
In this unit, students will brainstorm their own final project, discuss their ideas with their peers,
scope their project to fit within the time constraints of the class, plan out milestones for
incremental development, and create their own final product from scratch. This project allows
students to think creatively about the applications of the concepts covered in the course, and
create something of personal value.

Subsection EKs Lessons / Topics

Design Thinking

Lessons:
Intro to Design Thinking

CRD-1.A.4 CRD-2.E.4
CRD-1.A.5 CRD-2.F.1
CRD-1.A.6 CRD-2.F.2
CRD-2.A.1 CRD-2.F.5
CRD-2.A.2 CRD-2.F.6
CRD-2.E.1 CRD-2.F.7
CRD-2.E.2 IOC-1.A.2

Computing Innovations
Development Process
Program Specifications
Design Phase
Communication
Collaboration

Brainstorm, Prototype & CRD-2.E.2 CRD-2.F.4 Development Process

20

​

​

 ​

Test

Lessons:
Prototype
Test

CRD-2.F.7 CRD-2.F.3
CRD-1.A.5 IOC-1.D.1
CRD-1.A.6 IOC-1.D.2
CRD-1.A.4 IOC-1.D.3
CRD-2.E.3 IOC-1.F.11

User Testing
User Research
Diverse Perspectives
Iterative Development
Human Biases
Legal and Ethical Concerns

Project Prep and
Development

Lessons:
Project Prep and Development

CRD-1.B.1 Online Collaboration Tools

Example Activity and Big Idea/Computational Thinking Practice
User Interface Scavenger Hunt: Students search for 2 websites or apps, one with a good UI
and one with a not-so-good UI. They learn to discriminate features of solid UI design in terms of
accessibility and more before moving onto prototyping their creative project for the unit.
[Big Idea CRD][Computational Thinking Practices 6]

AP Computer Science Principles 2020 Supplemental Materials

Supplementary Units Prerequisite/Recommended Unit(s) # of activities

Extra Karel Practice Intro to Programming 12

Extra Karel Puzzles Intro to Programming 11

Karel Challenges Intro to Programming 7

Web Development After Pretest 79

Functions and Parameters Practice Functions & Parameters 8

Extra Console Challenges
- Prime Numbers

Javascript Control Structures 10

Animation and Games
- Timers
- Random Circles
- Random Ghosts
- Bouncing Ball
- Mouse Events: Mouse Clicked
- Mouse Events: Mouse Moved
- Drawing Lines
- Key Events
- Crazy Ball Game

Functions & Parameters 51

21

Project: Breakout Functions & Parameters 4

Data Structures Challenge Problems
- Conway’s Game of Life
- Connect Four

Basic Data Structures 6

Visualizing Music Basic Data Structures 9

Project: Tic Tac Toe Basic Data Structures 4

Project: Helicopter Basic Data Structures 24

More Basic Data Structures Basic Data Structures 38

22

	Structure Bookmarks
	Figure
	CodeHS
	CodeHS
	AP Computer Science Principles Cyber Course Syllabus
	AP Computer Science Principles Cyber Course Syllabus
	Introduction
	Introduction
	AP Computer Science Principles is the newest AP® course from the College Board. This course introduces students to the foundational concepts of computer science and explores the impact computing and technology have on our society.
	With a unique focus on creative problem solving and real-world applications, the CodeHS AP Computer Science Principles course gives students the opportunity to explore several important topics of computing using their own ideas and creativity, use the power of computing to create artifacts of personal value, and develop an interest in computer science that will foster further endeavors in the field.

	Course Overview
	Course Overview
	Prerequisites: There are no official prerequisites for the CodeHS AP Computer Science Principles course. This course is meant to be a first-time introduction to computer science and does not require students to come in with any computer programming experience. However, we recommend that students take our Introduction to Computer Science prior to our AP courses (more info at). Students who have completed our Intro to CS course will be able to apply knowledge of concepts covered in the Intro course to the mo
	codehs.com/library
	codehs.com/library

	Overarching Goals:
	●
	●
	●
	Increase and diversify participation in computer science

	●
	●
	Students, regardless of prior experience in computing, will develop confidence using computer science as a tool to express themselves and solve problems, and this confidence will prepare them for success in future endeavors in the field of computer science

	●
	●
	Students will understand the core principles of computing, a field which has and continues to change the world

	●
	●
	Students will be able to develop computational artifacts to solve problems, communicate ideas, and express their own creativity

	●
	●
	Students will be able to collaborate with others to solve problems and develop computational artifacts

	●
	●
	Students will be able to explain the impact computing has on society, economy, and culture

	●
	●
	Students will be able to analyze existing artifacts, identify and correct errors, and explain how the artifact functions

	●
	●
	Students will be able to explain how data, information, or knowledge is represented for computational use

	●
	●
	Students will be able to explain how abstractions are used in computation and modeling

	●
	●
	Students will learn to be informed and responsible users of technology

	Learning Environment: The course utilizes a blended classroom approach. The content is a mix of web-based and physical activities. Students will write and run code in the browser, create digital artifacts, and engage in in-person collaborative exercises with classmates all with a focus of Cybersecurity. Teachers utilize tools and resources provided by CodeHS to leverage time in the classroom and give focused 1-on-1 attention to students. Each unit of the course is broken down into lessons. Lessons consist o
	Programming Environment: Students write and run programs in the browser using the CodeHS editor. Students will be able to write both text-based and block-based JavaScript programs, and students will use to create graphical programs. Students gain programming experience early on in the course that will enable them to explore the rest of the course topics through computational thinking practices.
	Processing.js

	Course Resources: Access to a computer and high-speed internet is required. There is also an online textbook available for many modules and topics which can be accessed through the lesson plans or at
	https://codehs.gitbooks.io/introcs/content/
	https://codehs.gitbooks.io/introcs/content/

	Quizzes: At the end of most units, students take a summative multiple choice unit quiz in the style of the AP Exam that assesses their knowledge of the concepts covered in the unit. The course also provides an AP Test Practice unit with a cumulative AP Practice Multiple Choice Test.

	Course Objectives
	Course Objectives
	This course is based directly on the College Board AP Computer Science Principles Framework. We recommend reading the curriculum framework for context. The main course objectives are summarized below in the six computational thinking practices and five big ideas for the course.
	here
	here

	Computational Thinking Practices:
	The six computational thinking practices represent important aspects of the work that computer scientists engage in, and are denoted here by P1 through P6:
	●
	●
	●
	●
	Practice 1: Computational Solution Design

	○ Design and evaluate computational solutions for a purpose.

	●
	●
	●
	Practice P2: Algorithms and Program Development

	○ Develop and implement algorithms.

	●
	●
	●
	Practice P3: Abstraction in Program Development

	○ Develop programs that incorporate abstractions.

	●
	●
	●
	Practice P4: Code Analysis

	○ Evaluate and test algorithms and programs.

	●
	●
	●
	Practice P5: Computing Innovations

	○ Investigate computing innovations.

	●
	●
	Practice P6: Responsible Computing

	○ Contribute to an inclusive, safe, collaborative, and ethical computing culture.
	Big Ideas:
	The five big ideas of the course encompass foundational ideas in the field of computer science, and are denoted here by B1 through B5:
	● Big Idea 1: Creative Development (CRD)
	When developing computing innovations, developers can use a formal, iterative design process or experimentation. While using either approach, developers will encounter phases of investigating and reflecting, designing, prototyping, and testing. Additionally, collaboration is an important tool to use at any phase of development because considering multiple perspectives allows for improvement of innovations.
	● Big Idea 2: Data (DAT)
	Data is central to computing innovations because it communicates initial conditions to programs and represents new knowledge. Computers consume data, transform data, and produce new data, allowing users to create new information or knowledge to solve problems through the interpretation of this data. Computers store data digitally, which means that the data must be manipulated in order to be presented in a useful way to the user.
	● Big Idea 3: Algorithms and Programming (AAP)
	Programmers integrate algorithms and abstraction to create programs for creative purposes and to solve problems. Using multiple program statements in a specified order, making decisions, and repeating the same process multiple times are the building blocks of programs. Incorporating elements of abstraction, by breaking problems down into interacting pieces, each with their own purpose, makes writing complex programs easier. Programmers need to think algorithmically and use abstraction to define and interpre
	● Big Idea 4: Computing Systems and Networks (CSN)
	Computer systems and networks are used to transfer data. One of the largest and most commonly used networks is the Internet. Through a series of protocols, the Internet can be used to send and receive information and ideas throughout the world. Transferring and processing information can be slow when done on a single computer but leveraging multiple computers to do the work at the same time can significantly shorten the time it takes to complete tasks or solve problems.
	● Big Idea 5: Impact of Computing (IOC)
	Computers and computing have revolutionized our lives. To use computing safely and responsibly, we need to be aware of privacy, security, and ethical issues. As programmers, we need to understand how our programs will be used and be responsible for the consequences. As computer users, we need to understand how to protect ourselves and our privacy when using a computer.
	The AP Create Performance Task:
	The through course assessment is a performance task designed to gather evidence of student proficiency in the learning objectives. The AP Create Performance Tasks (PT) is an in-class assessment, administered by the teacher, that allows students to exemplify their learning through an authentic, “real-world” creation. In the Create Performance Task, students will design and implement a program to solve a problem, enable innovation, explore personal interest, or express creativity. Their development process sh
	curriculum framework
	curriculum framework

	Students will gain the experience necessary to complete the Create Performance Task in class. Each unit comes with practice PTs in which students will research topics in computing, and create their own digital artifacts. Sufficient time is set aside in the course for students to prepare for and complete the Create Performance Task.
	The AP Exam:
	This course will prepare students for the multiple-choice AP Computer Science Principles examination. Each lesson comes with quizzes to test essential knowledge for the AP Exam. Each
	This course will prepare students for the multiple-choice AP Computer Science Principles examination. Each lesson comes with quizzes to test essential knowledge for the AP Exam. Each
	unit includes a cumulative AP style multiple-choice exam to test understanding of the concepts in the unit and provide immediate feedback to the student.

	Course Breakdown
	Course Breakdown
	Unit 1: Introduction to Programming with Karel the Dog (3 weeks, 15 hours)
	This course begins with a strong focus on programming in order to allow students to create computational artifacts early on in the course. Students will be able to use their knowledge of programming to explore future topics in the course.
	We use Karel, a dog that only knows how to move, turn left, and place tennis balls in his world, to show students what it means to program, and allow students to focus on computational problem-solving. Students will learn about the need for programming languages, the uses of programs, how to write programs to solve computational problems, how to design algorithms, how to analyze and compare potential solutions to programming problems, and learn the value and challenges involved in collaborating with others
	Subsection
	Subsection
	Subsection
	EKs
	Lessons / Topics

	Abstraction
	Abstraction
	AAP-3.B.1 AAP-3.B.7 AAP-3.B.2 CRD-2.G.1
	Procedural Abstraction Modularity

	TR
	AAP-3.B.3 DAT-1.A.2
	Program Reuse

	Lessons:
	Lessons:
	AAP-3.B.4 DAT-1.A.5
	Digital Data (Bits)

	Abstraction
	Abstraction
	AAP-3.B.6
	Reducing Complexity

	Programming Style
	Programming Style

	TR
	CRD-2.G.1 CRD-2.B.5

	Lessons:
	Lessons:
	CRD-2.G.2 AAP-3.D.1
	Program Documentation

	Intro to Programming
	Intro to Programming
	AAP-2.M.1 AAP-3.D.2
	Using Existing Code and Libraries

	Super Karel
	Super Karel
	AAP-2.M.3 AAP-3.D.3
	APIs

	Ultra Karel
	Ultra Karel
	CRD-2.B.1 AAP-3.D.4
	Commenting Code

	Top-Down Design Commenting Your Code
	Top-Down Design Commenting Your Code
	CRD-2.B.2 AAP-3.D.5

	Control Structures
	Control Structures

	TR
	AAP-2.G.1
	If/Else Statements (Selection)

	Lessons:
	Lessons:
	AAP-2.J.1
	For Loops and While Loops

	If/Else Statements For Loops While Loops in Karel
	If/Else Statements For Loops While Loops in Karel
	AAP-2.K.1
	(Iteration)

	Debugging Strategies
	Debugging Strategies
	CRD-2.I.1
	Logic Errors

	TR
	CRD-2.I.2
	Syntax Errors

	Lessons:
	Lessons:
	CRD-2.I.3
	Run-Time Error

	Functions in Karel
	Functions in Karel
	CRD-2.I.5
	Testing

	Debugging Strategies
	Debugging Strategies

	TR
	AAP-2.A.4

	Designing Algorithms
	Designing Algorithms
	AAP-2.M.2
	Sequencing, Selection, Iteration

	TR
	AAP-2.B.1 AAP-4.A.2
	Clarity and Readability

	Lessons:
	Lessons:
	AAP-2.B.2 AAP-4.A.4
	Using Existing Algorithms

	Karel Algorithms
	Karel Algorithms
	AAP-2.B.6 AAP-4.A.5
	Optimization and Efficiency

	TR
	AAP-2.B.7 AAP-4.A.6

	Example Activities and Big Idea/Computational Thinking Practice The Two Towers: In this program, students have Karel build two towers of tennis balls. Each tower should be 3 tennis balls high. In the end, Karel should end up on top of the second tower, facing East. Students need to write at least 3 functions in order to solve this problem. This activity requires students to design and create functions for repeated processes within their program. Students need to consider top-down design and decomposition th
	Example Activities and Big Idea/Computational Thinking Practice The Two Towers: In this program, students have Karel build two towers of tennis balls. Each tower should be 3 tennis balls high. In the end, Karel should end up on top of the second tower, facing East. Students need to write at least 3 functions in order to solve this problem. This activity requires students to design and create functions for repeated processes within their program. Students need to consider top-down design and decomposition th

	Unit 2: Practice PT: Pair-Programming Paint (3 days, 3 hours)
	Students will use the grid coloring functionality of Karel to create a digital image. They will then embed this Karel program into their personal website portfolio.
	Subsection
	Subsection
	Subsection
	EKs
	Lessons / Topics

	Collaboration and Communication
	Collaboration and Communication
	CRD-1.A.3 CRD-2.F.7 CRD-1.A.4 CRD-2.G.1 CRD-1.B.2 CRD-2.G.3 CRD-1.C.1 CRD-2.G.4 CRD-2.F.5 CRD-2.G.5 CRD-2.F.6 CRD-2.H.1 CRD-2.H.2
	Collaboration Diverse Perspectives Bias Avoidance Pair-Programming Design and Planning Program Documentation Acknowledgement of Reused Code

	Example Activity and Big Idea/Computational Thinking Practice
	Example Activity and Big Idea/Computational Thinking Practice

	Create Your Own UltraKarel Image: Following the milestones and the pseudocode plan that students have laid out, students use pair-programming to write the code for their final project. They then test their code along the way to make sure they have solved each milestone. This activity allows students to develop something completely unique with their programming skills and implement a successful algorithm of their own design.
	Students then reflect upon and answer the following questions:
	1.
	1.
	1.
	Identify the programming language and purpose of your program.

	2.
	2.
	Describe the incremental and iterative development process of your program. How did you divide the program into smaller tasks and make a plan to complete them all?

	3.
	3.
	Describe the difficulties and/or opportunities you encountered and how they were resolved or incorporated.

	4.
	4.
	Identify an algorithm that is fundamental for your program to achieve its intended purpose and includes two or more additional algorithms.

	5.
	5.
	Describe how each algorithm within your selected algorithm functions independently, as well as in combination with others, to form a new algorithm that helps to achieve the intended purpose of the program.

	6.
	6.
	Identify an abstraction you developed, and explain how your abstraction helped manage the complexity of your program.

	[Big Idea CRD][Computational Thinking Practice 2]
	Unit 3: Programming with JavaScript (2 weeks, 10 hours)
	This unit introduces students to the basics of JavaScript, including variables, user input, control structures, functions with parameters and return values, and basic graphics, how to send messages to objects.
	Subsection
	Subsection
	Subsection
	EKs
	Lessons / Topics

	Programming Languages Lessons: What is Code? Uses of Programs
	Programming Languages Lessons: What is Code? Uses of Programs
	AAP-2.A.2 AAP-2.A.3 CRD-1.A.1 CRD-1.A.2 CRD-2.B.1
	What is Programming? Pseudocode Programming Languages Computing Innovations

	Variables Lessons: Variables
	Variables Lessons: Variables
	AAP-1.A.1 AAP-1.B.2 AAP-1.A.2 AAP-1.B.3 AAP-1.A.3 DAT-1.A.1 AAP-1.A.4 AAP-1.B.1
	Variable Names Assignment Operators Data Types Variables as Abstractions

	TR
	CRD-2.B.4

	TR
	AAP-2.B.3

	TR
	CRD-2.I.5 AAP-2.B.4

	TR
	CRD-2.J.1 AAP-2.B.5
	Program Behavior

	Arithmetic Expressions
	Arithmetic Expressions
	CRD-2.J.2 AAP-2.C.1 CRD-2.J.3 AAP-2.C.2
	Testing using Inputs Arithmetic Expressions

	TR
	AAP-2.A.1
	Order of Operations

	Lessons:
	Lessons:
	AAP-2.C.3
	Modulus

	Basic Math in JavaScript
	Basic Math in JavaScript
	AAP-2.A.2
	String Concatenation

	TR
	AAP-2.C.4

	TR
	AAP-2.A.3 AAP-2.D.1

	TR
	AAP-2.A.4

	TR
	AAP-2.D.2

	User Input
	User Input
	AAP-1.C.4 CRD-2.C.5
	Strings

	TR
	AAP-3.A.6 CRD-2.C.6
	User Input

	Lessons:
	Lessons:
	AAP-3.A.9 CRD-2.D.2
	Program Output

	User Input
	User Input
	CRD-2.C.2
	Events

	Mouse Events: Mouse Clicked
	Mouse Events: Mouse Clicked
	CRD-2.C.3
	Mouse and Key Events

	Key Events
	Key Events

	Example Activity and Big Idea/Computational Thinking Practice Computing Innovations (as part of Uses of Programs lesson): In this activity, students perform an online search for examples of computing innovations that have had an impact on society, economy, or culture. The computing innovations must consume, produce, and/or transform data. A computing innovation can be a physical object like a self-driving car, non-physical software like a picture editing software, or a non-physical concept like e-commerce.
	Example Activity and Big Idea/Computational Thinking Practice Computing Innovations (as part of Uses of Programs lesson): In this activity, students perform an online search for examples of computing innovations that have had an impact on society, economy, or culture. The computing innovations must consume, produce, and/or transform data. A computing innovation can be a physical object like a self-driving car, non-physical software like a picture editing software, or a non-physical concept like e-commerce.

	Unit 4: JavaScript Control Structures (2 weeks, 10 hours)
	In this unit, students learn how to use booleans and logical operators with control structures to make more advanced programs in JavaScript.
	Subsection
	Subsection
	Subsection
	EKs
	Lessons / Topics

	Comparison Operators Lessons: Booleans Comparison Operators
	Comparison Operators Lessons: Booleans Comparison Operators
	AAP-2.E.1 AAP-2.F.4 AAP-2.E.2 AAP-2.F.5 AAP-2.F.1 AAP-2.F.2 AAP-2.F.3
	Booleans Relational Operators Operands

	Selection Lessons: If Statements Random Numbers Applying Conditionals
	Selection Lessons: If Statements Random Numbers Applying Conditionals
	AAP-2.G.1 AAP-2.I.2 AAP-2.H.1 AAP-2.L.3 AAP-2.H.2 AAP-2.L.4 AAP-2.H.3 AAP-3.E.2 AAP-2.I.1
	Selection Conditional Statements Nested Conditionals Equivalent Boolean Statements Random Numbers Password Validation

	Iteration Lessons: While Loops
	Iteration Lessons: While Loops
	AAP-2.K.2 AAP-2.L.1 AAP-2.K.3 AAP-2.L.2 AAP-2.K.4 AAP-2.L.5 AAP-2.K.5
	Iteration Loops Different but Equivalent Algorithms

	Example Activity and Big Idea/Computational Thinking Practice Create a Password Prompt: Students write a program that uses conditional statements to verify that a user entered password meets minimum criteria. If their password is too short it will reprompt once. Once it is long enough it will ask the user to verify the password. This activity requires that students use multiple program statements and nested if statements in a specific order to solve a problem. [Big Idea AAP][Computational Thinking Practice
	Example Activity and Big Idea/Computational Thinking Practice Create a Password Prompt: Students write a program that uses conditional statements to verify that a user entered password meets minimum criteria. If their password is too short it will reprompt once. Once it is long enough it will ask the user to verify the password. This activity requires that students use multiple program statements and nested if statements in a specific order to solve a problem. [Big Idea AAP][Computational Thinking Practice

	Unit 5: Functions and Parameters (2 weeks, 10 hours)
	In this unit, students learn to write reusable code with functions and parameters.
	Subsection
	Subsection
	Subsection
	EKs
	Lessons / Topics

	Functions and Parameters
	Functions and Parameters
	CRD-2.C.6 AAP-3.A.3 CRD-2.D.2 AAP-3.A.4 CRD-2.B.3 AAP-3.B.5
	User and Application Input Program Output Procedures

	Lessons: Functions and Parameters 1 Functions and Parameters 2 Functions and Return Values 1 Functions and Return Values 2
	Lessons: Functions and Parameters 1 Functions and Parameters 2 Functions and Return Values 1 Functions and Return Values 2
	CRD-2.C.4 AAP-3.C.1 AAP-3.A.1 AAP-3.C.2 AAP-3.A.2 AAP-2.M.2
	Parameters Return Values Using Existing Algorithms

	Example Activity and Big Idea/Computational Thinking Practice Pool Table: Students write a program with a function that draws a pool ball. This function should take as parameters, the color, the number that should go on the pool ball, and the location of the center of the pool ball. Students need to consider the function abstractly as a means for taking specific data via the parameters and creating a unique graphical output based on those inputs. [Big Idea DAT][Computational Thinking Practice 3]
	Example Activity and Big Idea/Computational Thinking Practice Pool Table: Students write a program with a function that draws a pool ball. This function should take as parameters, the color, the number that should go on the pool ball, and the location of the center of the pool ball. Students need to consider the function abstractly as a means for taking specific data via the parameters and creating a unique graphical output based on those inputs. [Big Idea DAT][Computational Thinking Practice 3]

	Unit 6: Practice PT: Tell a Story (3 days, 3 hours)
	In this project, students will write a JavaScript program that tells a graphical story
	Example Activity and Big Idea/Computational Thinking Practice
	Tell a Story! In this activity, students write a JavaScript program that tells a graphical story in at least 4 scenes. Following the milestones and the pseudocode plan that students have laid out prior to this exercise, students write the code for their final project. Along the way, students are testing their code to identify errors in both their pseudocode algorithm and their program. At each milestone, students test their code to ensure that the functionality meets the expected results that were laid out
	[Big Idea CRD][Computational Thinking Practice 4]
	Unit 7: Basic Data Structures (2 weeks, 10 hours)
	In this unit, students learn to write reusable code with functions and parameters.
	Subsection
	Subsection
	Subsection
	EKs
	Lessons / Topics

	Basic Data Structures Lessons: Intro to Lists/Arrays Indexing Into an Array Removing an Element
	Basic Data Structures Lessons: Intro to Lists/Arrays Indexing Into an Array Removing an Element
	DAT-1.A.1 AAP-1.A.1 AAP-1.C.1 AAP-1.C.2 AAP-1.C.3 AAP-1.D.6 AAP-1.D.7 AAP-1.D.8
	Data Values Lists and Elements Indices List Procedures

	TR
	AAP-2.N.2 AAP-2.N.1

	TR
	AAP-1.D.1

	TR
	AAP-1.D.5

	Data Abstractions Lessons: Adding/Removing From Arrays Array Length and Looping
	Data Abstractions Lessons: Adding/Removing From Arrays Array Length and Looping
	DAT-2.E.4 AAP-1.D.2 AAP-1.D.3 AAP-1.D.4 DAT-2.E.2
	Data Abstraction Translating and Transforming Data Filtering and Cleaning Patterns

	TR
	DAT-2.D.4

	TR
	DAT-2.E.5

	Traversing a List Lessons: Array Length and Looping Iterating Over an Array Removing an Element
	Traversing a List Lessons: Array Length and Looping Iterating Over an Array Removing an Element
	DAT-2.D.6 AAP-3.A.5 AAP-2.O.1 AAP-3.A.7 AAP-2.O.2 AAP-3.A.8 AAP-3.C.1 AAP-3.E.1 AAP-3.C.2 AAP-3.A.6 AAP-2.O.3
	Extract and Modify Information Traversing a List Iteration Statements Usernames and Passwords

	Algorithm Efficiency Lessons: Array Length and Looping Finding an Element in a List
	Algorithm Efficiency Lessons: Array Length and Looping Finding an Element in a List
	AAP-2.O.4 AAP-4.A.1 DAT-2.D.3 AAP-4.A.3 AAP-2.O.5 AAP-4.A.7 AAP-2.P.1 AAP-4.A.8 AAP-2.P.2 AAP-4.A.9 AAP-2.P.3
	Using Existing Algorithms Search Tools Linear Search Binary Search Algorithm Efficiency Heuristics

	TR
	AAP-3.F.1

	TR
	AAP-3.F.2

	SImulation Lessons: Simulation
	SImulation Lessons: Simulation
	AAP-3.F.3 AAP-3.F.4 AAP-3.F.5 AAP-3.F.6
	Simulations as Abstractions Bias in Simulations Random Number Generators

	TR
	AAP-3.F.7

	TR
	AAP-3.F.8

	Example Activity and Big Idea/Computational Thinking Practice Draw a Barcode: Students write a program to draw a barcode on the screen given an array that represents the data in the barcode. The array will contain a boolean in it, and if the boolean is `true`, the program will need to draw a vertical line in that position that runs from the top to the bottom of the screen. If not, the program will not draw a line. This program development requires students to use data generated from their bit array and loop
	Example Activity and Big Idea/Computational Thinking Practice Draw a Barcode: Students write a program to draw a barcode on the screen given an array that represents the data in the barcode. The array will contain a boolean in it, and if the boolean is `true`, the program will need to draw a vertical line in that position that runs from the top to the bottom of the screen. If not, the program will not draw a line. This program development requires students to use data generated from their bit array and loop

	Unit 8: Digital Information (3 weeks, 15 hours)
	In this unit, students will learn about the various ways we represent information digitally. Topics covered include number systems, encoding data, programmatically creating pixel images, comparing data encodings, compressing and encrypting data. Students will work in pairs to develop their own data encryption algorithms and attempt to crack the encryptions of their peers.
	Subsection
	Subsection
	Subsection
	EKs
	Lessons / Topics

	Number Systems Lessons: Intro to Digital Information Number Systems
	Number Systems Lessons: Intro to Digital Information Number Systems
	CRD-2.C.1 DAT-1.A.7 CRD-2.D.1 DAT-1.B.1 CRD-2.J.2 DAT-1.B.2 CRD-2.J.3 DAT-1.B.3 CRD-2.I.4 DAT-1.C.1 DAT-1.A.2 DAT-1.C.2 DAT-1.A.3 DAT-1.C.3 DAT-1.A.4 DAT-1.C.4 DAT-1.A.5 DAT-1.C.5 DAT-1.A.6
	Computing Devices Abstraction Program Input and Output Bits and Bytes Overflow Errors Range of Value Limits Binary and Decimal Systems

	Data Compression Lessons: Data Compression Lossy Compression
	Data Compression Lessons: Data Compression Lossy Compression
	DAT-1.A.8 DAT-1.D.4 DAT-1.A.9 DAT-1.D.5 DAT-1.A.10 DAT-1.D.6 DAT-1.D.1 DAT-1.D.7 DAT-1.D.2 DAT-1.D.8 DAT-1.D.3
	Lossless Data Lossy Data Digital and Analog Data

	Steganography Lessons: Introduction to Steganography Ethics of Steganography
	Steganography Lessons: Introduction to Steganography Ethics of Steganography
	IOC-1.F.2 IOC-1.F.8 IOC-1.F.9 IOC-1.F.11
	What is Steganography Hiding and Extracting Messages Government Surveillance

	Example Activity and Big Idea/Computational Thinking Practice Ethics of Steganography: Students will explore the impact that computing has on privacy and surveillance by researching different ethical issues around personal and government tracking. Students will answer questions as to how technology has made it easier for companies and the government to track criminal behavior as well as discuss the ethical impact of this type of tracking. [Big Idea IOC][Computational Thinking Practice 6]
	Example Activity and Big Idea/Computational Thinking Practice Ethics of Steganography: Students will explore the impact that computing has on privacy and surveillance by researching different ethical issues around personal and government tracking. Students will answer questions as to how technology has made it easier for companies and the government to track criminal behavior as well as discuss the ethical impact of this type of tracking. [Big Idea IOC][Computational Thinking Practice 6]

	Unit 9: Practice PT: Steganography (3 days, 3 hours)
	In this project, students will be implementing a form of cryptography known as Steganography. Students can choose this practice PT or the following.
	Example Activity and Big Idea/Computational Thinking Practice
	Secret Image: Steganography-Students use a form of cryptography called steganography to hide a secret image inside of a cover image. They need to develop two functions that create filters, with one encoding and the other decoding. They are required to use a solid degree of abstraction since several functions will be required for each part of the encoding and decoding process. This also continues their consideration and discussions of privacy issues in computing.
	[Big Idea IOC][Computational Thinking Practice 3]
	In this unit, students will learn about the various ways we encrypt information. Topics covered include encoding and decrypting Caesar and Vigenere ciphers, and understanding symmetric and public key encryption.
	Unit 10: Encryption (1 weeks, 5 hours)
	Unit 10: Encryption (1 weeks, 5 hours)
	Unit 10: Encryption (1 weeks, 5 hours)

	Subsection
	Subsection
	EKs
	Lessons / Topics

	Encryption
	Encryption
	CRD-1.A.3

	TR
	AAP-2.D.1
	Introduction to Caesar

	Lessons:
	Lessons:
	AAP-2.H.1
	Decrypting and Breaking Caesar

	Caesar
	Caesar
	AAP-3.E.2
	Vigenere Cipher

	Vigenere
	Vigenere

	Symmetric and Public Key Encryption Lessons: Diffie-Hellman RSA Encryption
	Symmetric and Public Key Encryption Lessons: Diffie-Hellman RSA Encryption
	AAP-4.B.1 AAP-4.B.2 AAP-4.B.3 IOC-2.B.1 IOC-2.B.5
	Diffie-Hellman Key Exchange Public Key Programming RSA Encryption RSA Example

	Example Activity and Big Idea/Computational Thinking Practice Break Caesar's Cipher: Students explorer the concept of ciphers and how to write code that can encode and decode ciphers such as a Caesar Cipher. Before moving into more complex ciphers, students explore how a computer can easily break a Caesar Cipher. Students are given an encrypted passage and a tool that can shift letters. They then explore different shifts until the phrase becomes legible. In this process, students can see how there are a lim
	Example Activity and Big Idea/Computational Thinking Practice Break Caesar's Cipher: Students explorer the concept of ciphers and how to write code that can encode and decode ciphers such as a Caesar Cipher. Before moving into more complex ciphers, students explore how a computer can easily break a Caesar Cipher. Students are given an encrypted passage and a tool that can shift letters. They then explore different shifts until the phrase becomes legible. In this process, students can see how there are a lim

	[Big Idea IOC][Computational Thinking Practice 2]
	Unit 11: Practice PT: Create Your Own Image Filter (3 days, 3 hours)
	In this project, students pair up with a partner to develop a novel image filter that can be applied to any digital image of their choosing. They will describe their image filter, and their development process, and embed their image filter along with its description on their personal portfolio website. Students can choose this practice PT or the previous.
	Example Activity and Big Idea/Computational Thinking Practice
	Create an Image Filter: In this activity, students work with a partner to develop functions for creating unique mage filters. They share their creative solutions designs with others and incorporate feedback for improvement.
	[Big Idea CRD][Computational Thinking Practice 1]
	Unit 12: The Internet (2 weeks, 10 hours)
	This unit explores the structure and design of the internet, and how this design affects the reliability of network communication, the security of data, and personal privacy. Students will learn about the protocols and algorithms used on the internet and the importance of cybersecurity. Students will choose an innovation that was enabled by the Internet and explore the positive and negative impacts of their innovation on society, economy, and culture. Students will develop a computational artifact that illu
	Subsection
	Subsection
	Subsection
	EKs
	Lessons / Topics

	Internet Hardware and Addresses Lessons: Welcome to the Internet Internet Hardware Internet Addresses
	Internet Hardware and Addresses Lessons: Welcome to the Internet Internet Hardware Internet Addresses
	CSN-1.A.1 CSN-1.A.8 CSN-1.A.2 CSN-1.B.3 CSN-1.A.3 CSN-1.B.4 CSN-1.A.4 CSN-1.A.7
	Protocols Computing Devices Computer Networks Bandwidth

	Routing Lessons:
	Routing Lessons:
	CSN-1.A.5 CSN-1.E.2 CSN-1.A.6 CSN-1.E.3 CSN-1.B.5 CSN-1.E.4 CSN-1.B.6 CSN-1.E.5
	Routing Scalability Fault-Tolerance Redundancy

	Routing
	Routing
	CSN-1.B.7 CSN-1.E.6 CSN-1.E.1 CSN-1.E.7

	Packets and Protocols Lessons: Packets and Protocols
	Packets and Protocols Lessons: Packets and Protocols
	CSN-1.B.1 CSN-1.D.1 CSN-1.B.2 CSN-1.D.2 CSN-1.C.1 CSN-1.D.3 CSN-1.C.2 DAT-2.B.1 CSN-1.C.3 DAT-2.B.3 CSN-1.C.4 DAT-2.B.5
	Datastreams Packets IP, TCP, UDP HTTP Metadata

	TR
	DAT-2.C.7 CSN-2.A.6
	Parallel Systems

	Computing Systems
	Computing Systems
	DAT-2.C.8 CSN-2.A.7 CSN-2.A.1 CSN-2.B.1
	Scalability of Systems Sequential Computing

	TR
	CSN-2.A.2 CSN-2.B.2
	Parallel Computing

	Lessons:
	Lessons:
	CSN-2.A.3 CSN-2.B.3
	Distributed Computing

	Sequential, Parallel & Distributed
	Sequential, Parallel & Distributed
	CSN-2.A.4 CSN-2.B.4
	Efficiency of Solutions

	TR
	CSN-2.A.5 CSN-2.B.5
	Speedup

	TR
	IOC-1.A.1 IOC-1.E.2

	TR
	IOC-1.A.3 IOC-1.E.3

	TR
	IOC-1.A.4 IOC-1.E.4

	TR
	IOC-1.A.5 IOC-1.E.5

	TR
	IOC-1.B.1 IOC-1.E.6
	Computing Innovations

	Impact of the Internet
	Impact of the Internet
	IOC-1.B.2 IOC-1.F.1 IOC-1.B.3 IOC-1.F.2
	Unintended Effects Impact on Society

	TR
	IOC-1.B.4 IOC-1.F.3
	Rapid Sharing

	Lessons:
	Lessons:
	IOC-1.B.5 IOC-1.F.4
	Digital Divide

	The Impact of the Internet
	The Impact of the Internet
	IOC-1.B.6 IOC-1.F.5
	Citizen Science

	Creative Credit and Copyright
	Creative Credit and Copyright
	IOC-1.C.1 IOC-1.F.6
	Crowdsourcing

	TR
	IOC-1.C.2 IOC-1.F.7
	Creative Credit and Copyright

	TR
	IOC-1.C.3 IOC-1.F.9

	TR
	IOC-1.C.4 IOC-1.F.10

	TR
	IOC-1.C.5 IOC-1.F.11

	TR
	IOC-1.E.1

	Example Activity and Big Idea/Computational Thinking Practice Reflection: Unintended Effects -Students consider the WWW, targeted advertising and machine learning and data mining as examples of computing innovations. They also learn that responsible programmers try to consider the unintended ways their computing innovations can be used and the potential beneficial and harmful effects of these new uses although it may not be possible for a programmer to consider all the ways a computing innovation can be use
	Example Activity and Big Idea/Computational Thinking Practice Reflection: Unintended Effects -Students consider the WWW, targeted advertising and machine learning and data mining as examples of computing innovations. They also learn that responsible programmers try to consider the unintended ways their computing innovations can be used and the potential beneficial and harmful effects of these new uses although it may not be possible for a programmer to consider all the ways a computing innovation can be use

	2. Explain beneficial and harmful effects of at least one other computing innovation on society, economy, or culture.
	[Computing Innovation 2, Prompt A][Big Idea IOC][Computational Thinking Practice 5]
	Packets and Protocols: The Story of the Internet -In their own words, students tell the story of downloading an image from a website on the internet. They tell the story step by step of how their computer finds the relevant server, requests information from the server, and receives it. Students are required to include distinctions between the internet and the World Wide Web, such as:
	●
	●
	●
	The World Wide Web is a system of linked pages, programs, and files.

	●
	●
	HTTP is a protocol used by the World Wide Web.

	●
	●
	The World Wide Web uses the Internet.

	[Big Idea CSN][Computational Thinking Practice 5]
	In this unit, students will learn about the various ways we encrypt information. Topics covered include encoding and decrypting Caesar and Vigenere ciphers, and understanding symmetric and public key encryption.
	Unit 13: Cybersecurity (2 weeks, 10 hours)
	Unit 13: Cybersecurity (2 weeks, 10 hours)
	Unit 13: Cybersecurity (2 weeks, 10 hours)

	Subsection
	Subsection
	EKs
	Lessons / Topics

	TR
	IOC-1.F.8

	TR
	IOC-2.A.1 IOC-2.B.6

	TR
	IOC-2.A.7 IOC-2.B.7

	TR
	IOC-2.A.8 IOC-2.B.9

	Information Security Lessons: CIA Triad Personal security
	Information Security Lessons: CIA Triad Personal security
	IOC-2.A.9 IOC-2.B.10 IOC-2.A.11 IOC-2.B.11 IOC-2.A.12 IOC-2.A.13 IOC-2.A.15
	Phishing Attacks Password Authentication Password Strength Multi Factor Authentication

	TR
	IOC-2.B.1

	TR
	IOC-2.B.2

	TR
	IOC-2.B.3

	TR
	IOC-2.B.4

	Network Security
	Network Security
	IOC-2.A.4

	TR
	IOC-2.B.8
	Introduction to Networking

	Lessons:
	Lessons:
	IOC-2.B.5
	Introduction to the OSI Model

	OSI Model
	OSI Model
	IOC-2.B.9
	Network Attacks

	Network Attacks
	Network Attacks
	IOC-2.B.10

	Risk Lessons: Cybersecurity Risk Model
	Risk Lessons: Cybersecurity Risk Model
	IOC-2.C.1 IOC-2.C.5 IOC-2.C.2 IOC-2.C.6 IOC-2.C.3 IOC-2.C.7 IOC-2.C.4
	Basic Cybersecurity Risk Assessing Vulnerabilities Security Controls

	Example Activity and Big Idea/Computational Thinking Practice Phishing Simulator and Reflection: Students will explore several situations that are designed to look like possible phishing situations. In each, students decide if the situation is legitimate or phishing and then receive feedback as to their choice. After the exercise, they then have a chance to reflect on common characteristics. [Big Idea IOC][Computational Thinking Practice 6]
	Example Activity and Big Idea/Computational Thinking Practice Phishing Simulator and Reflection: Students will explore several situations that are designed to look like possible phishing situations. In each, students decide if the situation is legitimate or phishing and then receive feedback as to their choice. After the exercise, they then have a chance to reflect on common characteristics. [Big Idea IOC][Computational Thinking Practice 6]

	Unit 14: Practice PT: Cyber Ethics (3 days, 3 hours)
	Unit 14: Practice PT: Cyber Ethics (3 days, 3 hours)

	In this project, students will choose one of four articles on cyber ethics and write a position paper. Based on that article, they will provide an arguable opinion about who is responsible and why, and how the culpable party(ies) should be held accountable in the future so that other cities and their citizens do not suffer the same harms.
	Example Activity and Big Idea/Computational Thinking Practice
	Develop Your Position: In this activity, students focus on developing their position. They are asked to pick the best 3 or 4 points from an earlier activity where they listed the Pros and Cons for their article.
	For each point, students are then asked to write a well constructed paragraph that contains the following:
	●
	●
	●
	A general statement of the position

	●
	●
	An elaboration that references documents and source data

	●
	●
	Past experiences and authoritative testimony

	●
	●
	Conclusion restating the position

	[Computing Innovation 3, Prompt C][Big Idea IOC][Computational Thinking Practice 5]
	Unit 15: Data (1 week, 5 hours)
	In this unit, students will explore using computational tools to store massive amounts of data, manipulate and visualize data, find patterns in data, and draw conclusions from data. Students will consider how the modern wealth of data collection has impacted society in positive and negative ways. Students will work in teams to investigate a question of personal interest and use public data to present a data-driven insight to their peers. They will develop visualizations to communicate their findings.
	Subsection
	Subsection
	Subsection
	EKs
	Lessons / Topics

	TR
	DAT-2.A.1

	TR
	DAT-2.D.5

	TR
	DAT-2.A.2

	Visualizing and Interpreting Data Lessons: Getting Started with Data Visualizing and Interpreting Data
	Visualizing and Interpreting Data Lessons: Getting Started with Data Visualizing and Interpreting Data
	DAT-2.D.6 DAT-2.C.1 DAT-2.E.1 DAT-2.D.1 DAT-2.E.2 DAT-2.D.2 DAT-2.E.3
	Filtering and Cleaning Data Patterns and Trends Search Tools Tables, Diagrams and Displays Interactive Visualizations Combining Data Sources

	TR
	DAT-2.D.3

	TR
	DAT-2.E.5

	TR
	DAT-2.D.4

	TR
	DAT-2.A.3

	TR
	DAT-2.C.2

	TR
	DAT-2.A.4

	TR
	DAT-2.C.3

	Collecting Data and Data
	Collecting Data and Data
	DAT-2.B.1
	Metadata

	Limitations
	Limitations
	DAT-2.C.4 DAT-2.B.2
	Correlation Using a Variety of Sources

	TR
	DAT-2.C.5
	Incomplete or Invalid Data

	Lessons:
	Lessons:
	DAT-2.B.3
	Bias

	Data Collection and Limitations
	Data Collection and Limitations
	DAT-2.C.6
	Surveys, Testing, Interviews

	TR
	DAT-2.B.4

	TR
	DAT-2.D.6

	TR
	DAT-2.B.5

	TR
	CRD-2.F.3

	Personal Data
	Personal Data
	Personal Data Vulnerabilities

	Vulnerabilities
	Vulnerabilities
	What Can you Learn Cleaning Up Social Media Information Data Exchange

	Lessons:
	Lessons:
	What Can You Learn From an

	Unintended Data Sharing
	Unintended Data Sharing
	Image

	Metadata and Data Collection
	Metadata and Data Collection
	Online Privacy

	Example Activity and Big Idea/Computational Thinking Practice Importance of Metadata: Students consider how metadata can increase the effective use of data or data sets by providing additional information. They consider the importance of metadata and reflect on why metadata is important for a data set, how metadata help in finding specific data, and what metadata should reveal about the data. [Big Idea DAT][Computational Thinking Practice 5]
	Example Activity and Big Idea/Computational Thinking Practice Importance of Metadata: Students consider how metadata can increase the effective use of data or data sets by providing additional information. They consider the importance of metadata and reflect on why metadata is important for a data set, how metadata help in finding specific data, and what metadata should reveal about the data. [Big Idea DAT][Computational Thinking Practice 5]

	Unit 16: Practice PT: Present a Data-Driven Insight (3 days, 3 hours)
	In this project, students will work with a partner to answer a question of personal interest using a publicly available data set. Students will need to produce data visualizations and explain how these visualizations led to their conclusions. They will develop a computational artifact that illustrates, represents, or explains their findings, communicate their findings to their classmates.
	Example Activity and Big Idea/Computational Thinking Practice
	Present a Data-driven Insight: Students consider how the amount of collected data impacts our lives in ways that require considerable study and reflection for us to fully understand them. Students explore a question that can be answered by analyzing a dataset. They form a question and use visualization techniques to analyze the data to answer the question.
	[Big Idea DAT][Computational Thinking Practice 6]
	Unit 17 & 18: Explore MCQ Practice and Create Performance Task (3 weeks, 15 hours)
	This time is set aside for students to prepare for the Explore MCQ and create their AP Create Performance Task. Students will be given the chance to review course content and practice the skills necessary to complete the Create Performance Task. The Create PT will be administered over 12 hours of class time.
	Subsection
	Subsection
	Subsection
	EKs
	Lessons / Topics

	AP CSP Explore Task Practice
	AP CSP Explore Task Practice
	IOC-2.A.2 IOC-2.A.10 IOC-2.A.3 IOC-2.A.14 IOC-2.A.4 IOC-1.F.11 IOC-2.A.5 CRD-1.A.1 IOC-2.A.6 CRD-1.A.2
	Artifact Creation Computing Innovations Data Input and Output Data Privacy and Security

	Prepare for Create PT
	Prepare for Create PT
	ALL
	Review Course Content Incremental Development Documentation Debugging Collaborative Development

	Create PT
	Create PT
	12 hours of class time to conduct Create PT

	Example Activity and Big Idea/Computational Thinking Practice
	Create Performance Task: Students develop a program of their choice. Their development process includes iteratively designing, implementing, and testing their program. Students are strongly encouraged to work with another student in their class.
	[Big Idea AAP][Computational Thinking Practices 1-4]
	Unit 19: Review for the AP Exam (1 week, 5 hours)
	This unit gives students a review of the topics covered in the course and provides practice solving AP Exam style multiple-choice questions.
	Subsection
	Subsection
	Subsection
	Lessons / Topics

	Prepare for Practice Exam
	Prepare for Practice Exam
	Review course content What to expect on the exam

	Practice AP Exam
	Practice AP Exam
	Cumulative Final AP Review Multiple Choice Test

	Unit 20: Creative Development (Remainder of the school year, 2-4 weeks, 10-20 hours)
	Unit 20: Creative Development (Remainder of the school year, 2-4 weeks, 10-20 hours)

	In this unit, students will brainstorm their own final project, discuss their ideas with their peers, scope their project to fit within the time constraints of the class, plan out milestones for incremental development, and create their own final product from scratch. This project allows students to think creatively about the applications of the concepts covered in the course, and create something of personal value.
	Subsection
	Subsection
	Subsection
	EKs
	Lessons / Topics

	Design Thinking Lessons: Intro to Design Thinking
	Design Thinking Lessons: Intro to Design Thinking
	CRD-1.A.4 CRD-2.E.4 CRD-1.A.5 CRD-2.F.1 CRD-1.A.6 CRD-2.F.2 CRD-2.A.1 CRD-2.F.5 CRD-2.A.2 CRD-2.F.6 CRD-2.E.1 CRD-2.F.7 CRD-2.E.2 IOC-1.A.2
	Computing Innovations Development Process Program Specifications Design Phase Communication Collaboration

	Brainstorm, Prototype &
	Brainstorm, Prototype &
	CRD-2.E.2 CRD-2.F.4
	Development Process

	Test Lessons: Prototype Test
	Test Lessons: Prototype Test
	CRD-2.F.7 CRD-2.F.3 CRD-1.A.5 IOC-1.D.1 CRD-1.A.6 IOC-1.D.2 CRD-1.A.4 IOC-1.D.3 CRD-2.E.3 IOC-1.F.11
	User Testing User Research Diverse Perspectives Iterative Development Human Biases Legal and Ethical Concerns

	Project Prep and Development Lessons: Project Prep and Development
	Project Prep and Development Lessons: Project Prep and Development
	CRD-1.B.1
	Online Collaboration Tools

	Example Activity and Big Idea/Computational Thinking Practice User Interface Scavenger Hunt: Students search for 2 websites or apps, one with a good UI and one with a not-so-good UI. They learn to discriminate features of solid UI design in terms of accessibility and more before moving onto prototyping their creative project for the unit. [Big Idea CRD][Computational Thinking Practices 6]
	Example Activity and Big Idea/Computational Thinking Practice User Interface Scavenger Hunt: Students search for 2 websites or apps, one with a good UI and one with a not-so-good UI. They learn to discriminate features of solid UI design in terms of accessibility and more before moving onto prototyping their creative project for the unit. [Big Idea CRD][Computational Thinking Practices 6]

	AP Computer Science Principles 2020 Supplemental Materials
	Supplementary Units
	Supplementary Units
	Supplementary Units
	Prerequisite/Recommended Unit(s)
	# of activities

	Extra Karel Practice
	Extra Karel Practice
	Intro to Programming
	12

	Extra Karel Puzzles
	Extra Karel Puzzles
	Intro to Programming
	11

	Karel Challenges
	Karel Challenges
	Intro to Programming
	7

	Web Development
	Web Development
	After Pretest
	79

	Functions and Parameters Practice
	Functions and Parameters Practice
	Functions & Parameters
	8

	Extra Console Challenges -Prime Numbers
	Extra Console Challenges -Prime Numbers
	Javascript Control Structures
	10

	Animation and Games -Timers -Random Circles -Random Ghosts -Bouncing Ball -Mouse Events: Mouse Clicked -Mouse Events: Mouse Moved -Drawing Lines -Key Events -Crazy Ball Game
	Animation and Games -Timers -Random Circles -Random Ghosts -Bouncing Ball -Mouse Events: Mouse Clicked -Mouse Events: Mouse Moved -Drawing Lines -Key Events -Crazy Ball Game
	Functions & Parameters
	51

	Project: Breakout
	Project: Breakout
	Functions & Parameters
	4

	Data Structures Challenge Problems -Conway’s Game of Life -Connect Four
	Data Structures Challenge Problems -Conway’s Game of Life -Connect Four
	Basic Data Structures
	6

	Visualizing Music
	Visualizing Music
	Basic Data Structures
	9

	Project: Tic Tac Toe
	Project: Tic Tac Toe
	Basic Data Structures
	4

	Project: Helicopter
	Project: Helicopter
	Basic Data Structures
	24

	More Basic Data Structures
	More Basic Data Structures
	Basic Data Structures
	38

