AP STATISTICS STRAIGHTENING SCATTERPLOTS

NAME	
DATE	PER

The table below shows stopping distances in feet for a car tested 3 times at each of 5 speeds. We hope to create a model that predicts stopping distance from the speed of the car.

Speed(mph)	20	20	20	30	30	30	40	40	40	50	50	50	60	60	60
Stopping Distance (ft)	64	62	59	114	118	105	153	171	165	231	203	238	317	321	276
			data hali								 				

a. Sketch a scatterplot of the data below.

c. Sketch the residual plot below.

b. What is the equation of the LSRL?

d. Is the linear model a good fit? Explain.

Since the data is clearly not linear, we will try to <u>re-express</u> the data to make it linear. Fill in the following table. Label the axes of each graph.

Re-expression	Scatterplot	LSRL Equation	R ² value	Residual Plot
y ² v. x				

Re-expression	Scatterplot	LSRL Equation	R ² value	Residual Plot
\sqrt{y} v. x				
log y v. x				
-1				
$\frac{-1}{\sqrt{y}}$ v. x				
log y v. log x				
				<u> </u>

b. Which re-expression seems to have worked the best? Explain your decision.

c. Use this equation to predict the stopping distance for a car traveling 54 miles per hour.