INTRO TO SABERMETRICS AND STATISTICS

WHAT IS SABERMETRICS?

- "The search for objective knowledge about baseball." Bill James
- The term was coined, in part, to honor the Society for American Baseball Research (SABR)
- Sabermetric researchers often use statistical analysis to question traditional measures of baseball evaluation such as batting average and pitcher wins
- "The main contribution of Bill James and Pete Palmer ... is their exposure of the deficiency of looking at merely the traditional statistics." – "Understanding Sabermetrics" by Gabriel B. Costa, Michael R. Huber and John T. Saccoman

THE MEAN

- What is the mean?
- The mean, or average is the sum of all elements divided by the total number of elements in the set
- Practicing the Mean: Let's look at yearly home run totals for Albert Pujols
- **37**; 34; 43; 46; 41; 49; 32; 37; 47; 42; 37; 30; 17; 23
- What is the the mean?
- 515 home runs / 14 seasons =
- **36.8**

MEDIAN AND MODE

- What is the Median?
- The median is the exact middle of the data set
- Pujols' home runs (in order):
 - **17**; 23; 30; 32; 34; 37; 37; 37; 41; 42; 43; 46; 47; 49
- What is the mode?
- The mode is the number that appears most frequently.
- What is Pujols' mode and median?

EXPECTATIONS

Pujols currently has 515 home runs. Looking at his average output, how many more seasons does he need to play to hit 600 career home runs?

MEASURES OF DISPERSION

- In statistics, measures of dispersion show how tightly spread out the data is in relation to a measure of central tendency.
- The main measures of dispersion are: Range, Variance and Standard Deviation
- Range: Pujols' season totals vary from 17 to 49, giving him a range of (maximum – minimum = range) 32
- Broken into quartiles, the first quartile would be values less than 32; the second quartile ends at the median (37) and the third quartile ends at 43.
- The interquartile range (IQR) is 43 32= 11, meaning that 50 percent of the data is separated by 11.

1 st Quar.	2 nd Quar.	3 rd Quar.	4 th Quar.
17; 23; 30; 3	2; 34; 37; 37;	37; 41; 42; 4	3; 46; 47; 49

VARIANCE AND STANDARD DEVIATION

s² = Variance

- Σ = Summation, which means the sum of every term in the equation after the summation sign.
- x_i = Sample observation. This represents every term in the set.
- x = The mean. This represents the average of all the numbers in the set.
- n = The sample size. You can think of this as the number of terms in the set.
- Put simply: The variance is the sum of the squared difference between each number and the mean, divided by the total items in the set.

$$s^2 = \frac{\sum (X_i - \overline{X})^2}{n}$$

PUJOLS' HOME RUN VARIANCE

- Pujols' Home Runs:
 - **37; 34; 43; 46; 41; 49; 32; 37; 47; 42; 37; 30; 17; 23**
- The Mean: 36.8 (x)
- Take each difference, square it and average the result
- $(.2)^{2}+(-2.8)^{2}+(6.2)^{2}+(9.2)^{2}+(4.2)^{2}+(-4.8)^{2}+(.2)^{2}+(10.2)^{2}+(5.2)^{2}$ +(.2)^{2}+(-6.8)^{2}+(-19.8)^{2}+(-13.8)^{2}
- 04+7.84+38.44+84.64+17.64+23.04+.04+104.04+27.04+. 04+46.24+392.04+190.44 = 931.52
- Variance = 931.52/14= 66.54
- To find the standard deviation, take the square root of the variance
- Standard Deviation = 8.16

CHEBYSHEV'S RULE

- According to Chebyshev's Rule for a data set that doesn't follow a bell curve – at least 95 percent of the data will fall within 2 Standard Deviations of the Mean, and at least 99.4 percent will fall within 3.
- Looking at Pujols' Home Run Totals again:
 - Mean: 36.8
 - Standard Deviation: 8.16
 - So, 95% of his home run totals should be: 20.48 to 53.12. In fact, just one year falls outside of that range: 2013's 17.