Tracking of Simulated Biomass Particles in Bubbling Fluidized Beds

Stuart Daw, Jack Halow, Sreekanth Pannala, Gavin Wiggins, and Emilio Ramirez

2013 AICHE National Meeting

52: Fluidization and Fluid-Particle Systems for Energy and Environmental Applications I San Francisco, November 4, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Outline

- Objectives
- Background and Motivation
- Experimental Setup and Example Observations
- Modeling Approach and Preliminary Results
- Summary and Status

- Utilize magnetic particle tracking to measure dynamic behavior of simulated biomass particles in bubbling fluidized beds
- Develop a simple model that mimics observed particle behavior and apply it to simulate bubbling bed pyrolysis

Background: Biomass conversion to liquid fuels

Source: B.M. Jenkins, et al., Fuel Processing Technology, 54 (1998), 17-46

Background: Fast pyrolysis is a critical step in 3 biomass-to fuel processes

Background: One widely used approach for fast pyrolysis utilizes bubbling beds

- Group B bed solids (e.g., sand) with or without catalyst
- Bed fluidized under nooxygen conditions (mostly N₂, CO₂, H₂O)
- Raw biomass injected as particles and removed as char
- Biomass typically <1% of bed mass
- Bed temperature 400-600°C
- Very rapid heat up (up to 1000°C/s)
- Mixing and particle RTD very important to product composition and conversion

Motivation: Accurate pyrolysis reactor modeling is needed to assess options

- Complex heat, mass, and momentum transport
 - Within biomass particles
 - Between biomass and bed particles
 - Particle mixing and residence time in bed
 - Released pyrolysis products (char, tar, light gases)
- Complex chemistry
 - Intra-particle (decomposition, cracking, polymerization)
 - Catalysis of released gases
- Variable feedstock properties and conditions
 - Chemical composition (C, H, O, moisture)
 - Particle size and shape
 - Fluidization state, reactor size, temperature, pressure

Experimental Approach: Magnetic particle tracking to simulate biomass mixing*

- Simulated biomass (tracer) particles are constructed by inserting tiny neodymium magnets into balsa wood cylinders (typically >1 mm diameter, 0.4-1 g/cc)
- Bed particles (e.g., 207 micron glass, 2.5 g/cc) are fluidized with ambient air (1.0 <= U/Umf <=5.0)

- Single tracer particles are injected in bed at specific fluidization conditions and tracked
- Special algorithms de-convolute signals to give 3D particle trajectory
- Experimental facility at Separation Design Group Lab
- * See *IECR* 2010, *49,* 5037–5043 and 2012, *51*, 14566–14576

090701T03vector.pdw 2.0 mm glass beads 6.5 cm deep bed 85 LPM

Experimental Approach: 5.5 cm bed

- Probes aligned North, South, East, West
- Helmholtz coils modify earth's magnetic field in bed
- Non-metallic bed and supports

- 100 Hz sampling rate
- 5 min runs (30,000 points)
- Porous plate distributor

Experimental Results: Trajectories map 3D time-average mixing

Experimental Results: Vertical mixing profiles follow Weibull statistics

$$f(z) = \frac{k}{\lambda} \left(\frac{z}{\lambda}\right)^{k-1} e^{-(z/\lambda)^k}; C(z) = 1 - e^{-(z/\lambda)^k}$$

Experimental Results: Time series data reveal dynamics of particle motion

Modeling Approach: Low-order dynamic biomass pyrolysis reactor model

- Develop dynamic particle model that yields correct mixing statistics (multiple particles and different particle histories)
- Account for changes in biomass particle properties as pyrolysis occurs (translate tracking data to dynamic context)
- Key assumptions:
 - Initial focus on steady state
 - Released pyrolysis gases do not alter the fluidization state
 - Bed temperature is uniform
 - Biomass is represented by a single equivalent particle size
 - Each biomass particle follows a similar heat-up and devolatilization trajectory (from separate model)

Modeling Approach: Langevin model

——= - —+ ()

x= position; t = time; m = particle mass; λ = friction coefficient η (t) = stochastic perturbations

 Originally proposed by Paul Langevin (C. R. Acad. Sci. (Paris) 146: 530–533, 1908) to describe Brownian motion

We propose a modified version of this model for biomass particles in bubbling beds. In the vertical direction:

 f_d = time average gas drag; f_g = gravitational force; () = vertical perturbations

• A similar force balance can be written for horizontal particle position except that we assume no time-average drag or gravitational forces:

 $\eta_h(t)$ = horizontal perturbations

(1872 - 1946)

Modeling Approach: A discrete Langevin approximation

• Approximating derivatives over discrete time intervals and combining and rearranging terms for vertical motion results in:

$$(+) = \cdot () - \cdot (-) + + '()$$

z(t) = axial position at time t a, b, and c = empirical parameters that reflect time average forces $\eta'_v(t)$ = vertical stochastic particle shifts

- a, b, and c can be estimated with experimental particle position time series
- Stochastic inputs, η'(t), can be estimated from stepwise prediction errors
- For horizontal motion, the result is:

$$(+) = \cdot () - \cdot (-) + '()$$

z(t) = axial position at time t a and b = empirical parameters that reflect time average forces $\eta'_h(t)$ = horizontal stochastic particle shifts

Modeling Results: 2nd-order regression is sufficient for magnetic particle motion

$$(+) = \sum_{i=1}^{n} (i) \cdot (+-) + + (')$$

- Evaluate change in error (prediction) with increasing order
- Stop increasing order when error converges

Preliminary Results: Parameter values follow simple trends

Preliminary Results: Stochastic effects vary spatially over the bed

Vertical stochastic fluctuations in upper bed

Stochastic fluctuations in lower part of bed

- Need to understand more details about these variations
- CFD may be a useful tool

Preliminary Results: Simplified model can closely approximate particle statistics

Observed particle statistics are closely approximated by the model already, but simulation of spatial variations in stochastic fluctuations can be improved

Preliminary Results: Particle distribution in integral reactor

Spatial distribution of steady-state particle states

- Track 100s-1000s of particles in steady-state reactor
 - Specify biomass injection location and steady-state bed inventory
 - Specify condition for char particles to exit the bed (e.g., location, density)
 - Inject new particle each time one exits (maintain steady state)
 - Increment position of each particle by Langevin rules
 - Particles devolatilize according to heat up and reaction models

Preliminary Results: Integral model yields ss pyrolysis rates, conversions

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Preliminary Results: Integral model yields ss pyrolysis rates, conversions

Summary and Status

- Magnetic particle tracking yields unprecedented details about single particle motion in bubbling beds
- A discrete Langevin model replicates the observed particle mixing statistics and time correlations
- Langevin parameters can be correlated with changes in particle properties and fluidization state
- Monte Carlo reactor simulations yield spatio-temporal distributions of ss particle residence time, age, and state of devolatilization
- The above can predict pyrolysis performance trends with changes in feed properties and reactor conditions
- Additional studies are underway to understand/improve the stochastic Langevin terms (CFD/DEM opportunities)

Acknowledgements

- Melissa Klembara: U.S. Department of Energy, Bioenergy Technologies Office
- Tim Theiss, Charles Finney : Oak Ridge National Lab
- Separation Design Group, Waynesburg, PA
- Computational Pyrolysis Project Partners
 - Mark Nimlos, David Robichaud: National Renewable Energy Lab
 - Robert Weber: Pacific Northwest National Lab
 - Larry Curtiss: Argonne National Lab
 - Tyler Westover: Idaho National Lab

