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Objectives 
• Utilize magnetic particle tracking  to measure dynamic 

behavior of simulated biomass particles in bubbling 
fluidized beds 

• Develop a simple model that mimics observed particle 
behavior and apply it to simulate bubbling bed pyrolysis 
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Background: Biomass conversion to liquid fuels
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Source: B.M. Jenkins, et al., Fuel Processing Technology, 54 (1998), 17-46



5 Presentation name

Background: Fast pyrolysis is a critical 
step in 3 biomass-to fuel processes  

Fast pyrolysis and hydroprocessing  

In-situ catalytic fast pyrolysis  

Ex-situ catalytic fast pyrolysis  



6 Presentation name

Background: One widely used approach 
for fast pyrolysis utilizes bubbling beds 

• Group B bed solids (e.g., 
sand) with or without catalyst

• Bed fluidized under no-
oxygen conditions (mostly N2,
CO2, H2O)

• Raw biomass injected as 
particles and removed as char

• Biomass typically <1% of bed 
mass

• Bed temperature 400-600C

• Very rapid heat up (up to 
1000C/s)

• Mixing and particle RTD very 
important to product 
composition and conversion
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Motivation: Accurate pyrolysis reactor
modeling is needed to assess options
• Complex heat, mass, and momentum transport 

– Within biomass particles
– Between biomass and bed particles
– Particle mixing and residence time in bed 
– Released pyrolysis products (char, tar, light gases)

• Complex chemistry
– Intra-particle (decomposition, cracking, polymerization)
– Catalysis of released gases

• Variable feedstock properties and conditions
– Chemical composition (C, H, O, moisture)
– Particle size and shape
– Fluidization state, reactor size, temperature, pressure
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Experimental Approach: Magnetic particle 
tracking to simulate biomass mixing*
Simulated biomass (tracer) particles are constructed 

by inserting tiny neodymium magnets into balsa 
wood cylinders (typically >1 mm diameter, 0.4-1 g/cc)
Bed particles (e.g., 207 micron glass, 2.5 g/cc) are 

fluidized with ambient air (1.0 <= U/Umf <=5.0)

• Single tracer particles are injected in bed at specific 
fluidization conditions and tracked

• Special algorithms de-convolute signals to give 3D 
particle trajectory  

• Experimental facility at Separation Design Group Lab
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Experimental Approach: 5.5 cm bed
• Probes aligned North, South, East, West

• Helmholtz coils modify earth’s magnetic field in bed

• Non-metallic bed and supports

• 100 Hz sampling rate 

• 5 min runs (30,000 points)

• Porous plate distributor
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Experimental Results: Trajectories map 
3D time-average mixing

Top View

Side View
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Experimental Results: Vertical mixing 
profiles follow Weibull statistics  
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Experimental Results: Time series data 
reveal dynamics of particle motion
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Modeling Approach: Low-order dynamic 
biomass pyrolysis reactor model

• Develop dynamic particle model that yields correct mixing 
statistics (multiple particles and different particle histories)

• Account for changes in biomass particle properties as pyrolysis
occurs (translate tracking data to dynamic context)

• Key assumptions:
– Initial focus on steady state
– Released pyrolysis gases do not alter the fluidization state
– Bed temperature is uniform
– Biomass is represented by a single equivalent particle size
– Each biomass particle follows a similar heat-up and devolatilization 

trajectory (from separate model)
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Modeling Approach: Langevin model 

• Originally proposed by Paul Langevin (C. R. Acad. Sci. (Paris) 146: 
530–533, 1908) to describe Brownian motion
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x= position; t = time; m = particle mass; = friction coefficient 
(t) = stochastic perturbations 

Paul Langevin 
(1872-1946)

We propose a modified version of this model for biomass particles in bubbling 
beds. In the vertical direction: 
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fd = time average gas drag; fg = gravitational force; �� � = vertical perturbations

• A similar force balance can be written for horizontal particle position except that 
we assume no time-average drag or gravitational forces:
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h(t) = horizontal perturbations
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Modeling Approach: A discrete Langevin 
approximation 

• a, b, and c can be estimated with experimental particle position 
time series

• Stochastic inputs, ’(t), can be estimated from stepwise prediction 
errors

• Approximating  derivatives over discrete time intervals and 
combining and rearranging terms for vertical motion results in:

� � + � = � ∙ � � − � ∙ � � − � + � + �′
� �

z(t) = axial position at time t 
a, b, and c = empirical parameters that reflect time average forces 
’v(t) = vertical stochastic particle shifts

• For horizontal motion, the result is:
� � + � = � ∙ � � − � ∙ � � − � + �′

� �
z(t) = axial position at time t 
a and b = empirical parameters that reflect time average forces 
’h(t) = horizontal stochastic particle shifts
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Modeling Results: 2nd-order regression is
sufficient for magnetic particle motion
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• Evaluate change in error (prediction) with increasing order 
• Stop increasing order when error converges
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Preliminary Results: Parameter values 
follow simple trends 
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Preliminary Results: Stochastic effects 
vary spatially over the bed

Vertical stochastic fluctuations
in upper bed

Stochastic fluctuations in 
lower part of bed

• Need to understand more details about these variations
• CFD may be a useful tool 
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Preliminary Results: Simplified model can
closely approximate particle statistics

Observed particle statistics are closely approximated by the model 
already, but simulation of spatial variations in stochastic fluctuations can
be improved
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Preliminary Results: Particle distribution in
integral reactor

• Track 100s-1000s of 
particles in steady-state 
reactor

– Specify biomass injection 
location and steady-state bed 
inventory

– Specify condition for char 
particles to exit the bed (e.g., 
location, density)

– Inject new particle each time 
one exits (maintain steady 
state)

– Increment position of each 
particle by Langevin rules

– Particles devolatilize according
to heat up and reaction models

Green- Raw (high VM)

Red- Devolatilized (low VM)
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Preliminary Results: Integral model 
yields ss pyrolysis rates, conversions
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Preliminary Results: Integral model 
yields ss pyrolysis rates, conversions
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Summary and Status
• Magnetic particle tracking yields unprecedented details 

about single particle motion in bubbling beds
• A discrete Langevin model replicates the observed 

particle mixing statistics and time correlations
• Langevin parameters can be correlated with changes in 

particle properties and fluidization state
• Monte Carlo reactor simulations yield spatio-temporal 

distributions of ss particle residence time, age, and state 
of devolatilization

• The above can predict pyrolysis performance trends with 
changes in feed properties and reactor conditions 

• Additional studies are underway to understand/improve 
the stochastic Langevin terms (CFD/DEM opportunities)
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