Name: _____

Class/Lab Period: _____

Separation of a Mixture

Data Table A. Physical Properties of Substances

Substance	Physical Appearance	Magnetism	Solubility in Water
Salt			
Sand			
Iron			
	Physical Appearance	Effect of Water	Results of Filtration
Sand + Salt			

Data Table B. Separation of a Mixture

Mixture Code_____

Mass of Original Mixture_____

Mass of Iron (recovered) _____

Mass of Salt (recovered) _____

Mass of Sand (recovered)

Total Mass of Recovered Solids_____

Use this space to record the mass measurements that are needed to calculate the mass percent composition of the sample mixture.

Post-Lab Questions

- 1. The chemical formulas of iron and salt are Fe and NaCl, respectively. Are these substances elements or compounds?
- 2. Are any of the substances magnetic? Is magnetism a physical or chemical property? Explain.
- 3. Which substance(s) dissolved in water? Is solubility a physical or chemical property? Explain.
- 4. Is the combination of salt and sand a new compound or a mixture? Explain.
- 5. Describe the results of the filtration experiment. Which substance remained on the filter paper after filtration? Is the filtrate (the liquid that passed through the funnel) a pure substance? Explain.
- 6. Calculate the *mass percentage* of each component in the mixture. Assume that the total mass is the mass of the *original mixture* that you tested.
- 7. The actual yield is the mass of material recovered after a separation process. The theoretical yield is the maximum amount of substance that can be obtained, assuming 100% efficiency of each step in the separation procedure. The actual yield is usually less than theoretical because some material is generally lost in any physical manipulation in the lab. The *percent yield*, which describes the efficiency of the recovery operation, is calculated using the following equation. Calculate the percent yield for the separation of your mixture.

percent yield = (actual yield/theoretical yield) \times 100%