

Integration: "Rectilinear Motion Revisited Using Integration"

All graphics are attributed to:

Introduction

• In Section 4.6 we used the derivative to find velocity and acceleration for a particle in rectilinear motion.

v(t) = s'(t) and a(t) = v'(t) = s''(t)

• In this section, we will use the integral to reverse the process.

 $s(t) = \int v(t)dt$ and $v(t) = \int a(t)dt$

Example

Suppose a particle moves with velocity $v(t) = \cos \pi t$ along a coordinate line. Assuming that the particle has coordinate s = 4 at time t = 0, find its position function.

Solution:

The position function is $s(t) = \int v(t)dt = \int \cos \pi t \, dt = \frac{1}{\pi} \sin \pi t + C$

Now, substitute in (0,4) to solve for the specific C:

 $s(0) = \frac{1}{\pi} \sin 0 + C = 4$

$$\frac{1}{\pi}*0 + C = 4$$

$$s(t) = \frac{1}{\pi} \sin \pi t + 4$$

C = 4

XIL

Computing Displacement by Integration

 Since displacement is final position minus initial position, it can be written as follows in integral form:

$$\begin{bmatrix} \text{displacement} \\ \text{over the time} \\ \text{interval} [t_0, t_1] \end{bmatrix} = \int_{t_0}^{t_1} v(t) \, dt = \int_{t_0}^{t_1} s'(t) \, dt = s(t_1) - s(t_0)$$

• This is a special case of a form of the Fundamental Theorem of Calculus from section 5.6: $\int_{a}^{b} F'(x) dx = F(b) - F(a)$

Computing Distance Traveled by Integration

- Distance traveled is different than displacement because it is the total of all of the distances traveled in both positive and negative directions.
- Therefore, we must integrate the absolute value of the velocity function:

 $\begin{bmatrix} \text{distance traveled} \\ \text{during time} \\ \text{interval} [t_0, t_1] \end{bmatrix} = \int_{t_0}^{t_1} |v(t)| dt$

 NOTE: Integrating velocity over a time interval produces displacement, and integrating speed over a time produces distance traveled.

Example

Example 2 Suppose that a particle moves on a coordinate line so that its velocity at time t is $v(t) = t^2 - 2t$ m/s (Figure 5.7.3).

(a) Find the displacement of the particle during the time interval 0 ≤ t ≤ 3.
(b) Find the distance traveled by the particle during the time interval 0 ≤ t ≤ 3.

Solution (a). From (3) the displacement is

$$\int_0^3 v(t) \, dt = \int_0^3 (t^2 - 2t) \, dt = \left[\frac{t^3}{3} - t^2\right]_0^3 = 0$$

Use a and b as given in question.

Thus, the particle is at the same position at time t = 3 as at t = 0.

Solution (b). The velocity can be written as $v(t) = t^2 - 2t = t(t-2)$, from which we see that $v(t) \le 0$ for $0 \le t \le 2$ and $v(t) \ge 0$ for $2 \le t \le 3$. Thus, it follows from (4) that the distance traveled is

$$\int_{0}^{3} |v(t)| dt = \int_{0}^{2} -v(t) dt + \int_{2}^{3} v(t) dt$$
$$= \int_{0}^{2} -(t^{2} - 2t) dt + \int_{2}^{3} (t^{2} - 2t) dt$$
$$= -\left[\frac{t^{3}}{3} - t^{2}\right]_{0}^{2} + \left[\frac{t^{3}}{3} - t^{2}\right]_{2}^{3} = \frac{4}{3} + \frac{4}{3} = \frac{8}{3} \text{ m}$$

First determine where the particle turns around, then use Theorem 5.5.5 to break into parts.

Analyzing the Velocity vs. Time Curve

As you hopefully saw in the last example, the integral is the "net signed area" under the velocity curve v(t) between time zero t₀ and time one t₁ (see graph on next slide) which gives you displacement.

• The "total area" under v(t) between those times gives you distance traveled.

Distance Traveled vs. Displacement

Constant Acceleration

- When acceleration is constant, we can work backwards to find formulas for position and velocity as long as we know the position and velocity at some point in time.
- Example: Suppose that an intergalactic spacecraft uses a sail and the "solar wind" to produce a constant acceleration of 0.032 m/s² (a = .032). Assuming that the spacecraft has a velocity of 10,000 m/s (v(0) = 10,000) when the said is first raised, how far will the spacecraft travel in 1 hour?
- NOTE: s(0) = 0

• Remember: $s(t) = \int v(t)dt$ and $v(t) = \int a(t)dt$ • Therefore, v(t) = .032t + C which is the integral of accel. 10,000 = .032(0) + C so C = 10,000 gives v(t) = .032t + 10,000 and $s(t) = .032t^2/2 + 10,000t + C_2$ the integral of v(t) $0 = .016(0)^2 + 10,000(0) + C_2$ so $C_2 = 0$ gives $s(t) = .016t^2 + 10,000t$ and since 1 hour = 3600 sec $s(3600) = .016(3600)^2 + 10,000(3600)$ is apprx 36,200,000 meters

General Case of Constant Acceleration

O We can use the same method from the previous example to find general formulas for ≫ velocity and position when acceleration is constant by integrating acceleration:

$$v(t) = \int a(t) dt = \int a dt = at + C_1$$

To determine the constant of integration C_1 we apply initial condition (7) to this equation to obtain

$$c_0 = c(0) = a \cdot 0 + c_1 = c_1$$

Substituting this in (8) and putting the constant term first yields

$$v(t) = v_0 + at$$

Since v_0 is constant, it follows that

$$s(t) = \int v(t) dt = \int (v_0 + at) dt = v_0 t + \frac{1}{2}at^2 + C_2$$

To determine the constant C_2 we apply initial condition (6) to this equation to obtain

 $s_0 = s(0) = v_0 \cdot 0 + \frac{1}{2}a \cdot 0 + C_2 = C_2$

Substituting this in (9) and putting the constant term first yields

 $s(t) = s_0 + v_0 t + \frac{1}{2}at^2$

(8)

(9)

Free-Fall Model

- Motion that occurs when an object near the Earth is imparted some initial velocity (up or down) and thereafter moves along a vertical line is called free-fall motion.
- We assume the only force acting on the object is the Earth's gravity which is constant (when sufficiently close to Earth). NOTE: We are disregarding air resistance and gravitational pull from the moon, etc. for now.
- A particle with free-fall motion has constant acceleration in the downward direction (9.8 meters/second² or 32 feet/second²).
- Therefore, the formulas developed on the previous slide apply and a = -acceleration due to gravity (g).

5.7.2 CONSTANT ACCELERATION If a particle moves with constant acceleration *a* along an *s*-axis, and if the position and velocity at time t = 0 are s_0 and v_0 , respectively, then the position and velocity functions of the particle are

$$s(t) = s_0 + v_0 t + \frac{1}{2}at^2 \tag{10}$$

$$v(t) = v_0 + at \tag{11}$$

• There are examples on page 381 that my be helpful.

• They are similar to the spacecraft example, but include gravity.

Paris from atop the Eiffel Tower

