Solving Equations Practice Test 1.1-1.4

- 1. To which subsets of the real numbers does the number 1.48 belong?
 - a. natural numbers, whole numbers, integers, rational numbers
 - b. rational numbers, irrational numbers
 - c. rational numbers
 - d. none of the above
- 2. To which subsets of the real numbers does the number 63 belong?
- 3. To which subsets of the real numbers does the number $\sqrt{19}$ belong?
- 4. What is the order of $\sqrt{5}$, -0.9, $-\frac{5}{3}$, 0.6, $\sqrt{3}$ from least to greatest?

What is the solution of the equation?

5.
$$3.8x + 1.7 = 16.9$$

5.
$$3.8x + 1.7 = 16.9$$
 6. $\frac{4}{5}x + 6 = 8$ 7. $7 = -d + 10$

7.
$$7 = -d + 10$$

8.
$$\frac{b-5}{2} = 8$$

9.
$$25 = -9 - 7x$$

9.
$$25 = -9 - 7x$$
 10. $8d + 2d + d - 8 - 5d = 0$

11.
$$-6y + 14 + 4y = 32$$
 12. $13 = -2p + 8 + 3p$ 13. $3(y+3) + 4 = 40$

12.
$$13 = -2p + 8 + 3p$$

13.
$$3(y+3)+4=40$$

14.
$$3(y-3) = 18$$

15.
$$\frac{2p}{4} - \frac{38}{4} = -8$$

15.
$$\frac{2p}{4} - \frac{38}{4} = -8$$
 16. $-9(x+2) = -2(8x-5)$

17.
$$2(h-5)-h=h-10$$

18.
$$-11 + 6z = -6 + 6z$$
 19. $\frac{4}{7}(x+1) = 6$

19.
$$\frac{4}{7}(x+1) = 6$$

20.
$$\frac{2}{6}x + \frac{6}{7} = 2$$

21.
$$\frac{2x-7}{6} = \frac{3x+1}{10}$$

- 22. The parking garage at Lego Land charges you \$30 to enter but only \$3 per hour. The parking garage at the hotel next door knows that people will park in their lot. So they charge \$10 to enter and \$7 per hour. Write and solve an equation to find the number of hours in which the garages will cost the same amount.
- 23. a. Solve P = 2L + 2w for L
 - b. If you have 52 feet of lumber to construct the sides of a sandbox, and the length is set at 16 feet, how wide can the sandbox be?
- Solve A = lw for w 24. a.
 - b. If the length of a rectangular sandbox is set at 16 feet, what width is required to obtain an area of 200 square feet?

Solving Equations Practice Test 1.1-1.4 Answer Section

 2. 	NAT: TOP: KEY: ANS:	1-1.1 Find the HSN.RN.B.3 1-1 Example 1	Unders	product of two stand Sets and le numbers ir	orationa STA: Subsets ntegers	al numbers and 1.1.a 1.1.b 1.3 rational number	explain 3.a	1-1 Operations on Real Numbers why the sum or product is rational.
3.	NAT: TOP: ANS:		sum or	product of two	rationa STA:	1.1.a 1.1.b 1.1	explain 3.a	al Numbers why the sum or product is rational integers rational numbers
4.	NAT: TOP: ANS:		Unders	product of two	rationa STA:	1.1.a 1.1.b 1.1	explain 3.a	al Numbers why the sum or product is rational. integers rational numbers
5.	NAT: TOP:		2 Compa	product of two	rationa STA: Real Nu	1.1.a 1.1.b 1.3 mbers	explain	al Numbers why the sum or product is rational.
6.	NAT: TOP:		that each HSA.I Solve I	h step in solvii REI.A.1 HSA Linear Equatio	ng a line .REI.B.: ns	3		quations om the equality in the previous step
7.	NAT: TOP:		l HSA.I Solve I	h step in solvii REI.A.1 HSA Linear Equatio	ng a line .REI.B.: ns	3		quations om the equality in the previous step

PTS: 1 DIF: L2 REF: 1-2 Solving Linear Equations

OBJ: 1-2.1 Explain that each step in solving a linear equation follows from the equality in the previous step.

NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3

TOP: 1-2 Example 1 Solve Linear Equations

KEY: equation in one variable | isolate | inverse operations

8. ANS:

21

PTS: 1 DIF: L3 REF: 1-2 Solving Linear Equations

OBJ: 1-2.1 Explain that each step in solving a linear equation follows from the equality in the previous step.

NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3

TOP: 1-2 Example 1 Solve Linear Equations

KEY: equation in one variable | isolate | inverse operations

9. ANS:

Steps	Reasons			
25 = -9 - 7x	Original equation			
25 + 9 = -9 + (-7x) + 9	Addition Property of Equality			
25 + 9 = -9 + 9 + (-7x)	Commutative Property of Addition			
34 = -7x	Use addition to simplify.			
$\frac{34}{-7} = \frac{-7x}{-7}$	Division Property of Equality			
$-\frac{34}{7} = x$	Use division to simplify.			

PTS: 1 DIF: L4 REF: 1-2 Solving Linear Equations

OBJ: 1-2.1 Explain that each step in solving a linear equation follows from the equality in the previous step.

NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3

TOP: 1-2 Example 1 Solve Linear Equations

KEY: justify steps in solution | equation in one variable

10. ANS:

 $\frac{4}{3}$

PTS: 1 DIF: L4 REF: 1-2 Solving Linear Equations

OBJ: 1-2.1 Explain that each step in solving a linear equation follows from the equality in the previous step.

NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3

TOP: 1-2 Example 1 Solve Linear Equations

KEY: like terms | equation in one variable | inverse operations

```
11. ANS:
    _9
    PTS: 1
                         DIF: L3
                                             REF: 1-2 Solving Linear Equations
    OBJ: 1-2.1 Explain that each step in solving a linear equation follows from the equality in the previous step.
    NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3
    TOP: 1-2 Example 1 Solve Linear Equations
    KEY: like terms | equation in one variable | inverse operations
12. ANS:
    5
    PTS: 1
                         DIF: L3
                                             REF: 1-2 Solving Linear Equations
    OBJ: 1-2.1 Explain that each step in solving a linear equation follows from the equality in the previous step.
    NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3
    TOP: 1-2 Example 1 Solve Linear Equations
    KEY: like terms | equation in one variable | inverse operations
13. ANS:
    PTS: 1
                         DIF: L3
                                             REF: 1-2 Solving Linear Equations
    OBJ: 1-2.2 Create and solve linear equations with one variable using the properties of equality.
    NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3
    TOP: 1-2 Example 4 Use Linear Equations to Solve Problems
    KEY: Distributive Property | equation in one variable | inverse operations
14. ANS:
    PTS: 1
                         DIF: L2
                                             REF: 1-2 Solving Linear Equations
    OBJ: 1-2.2 Create and solve linear equations with one variable using the properties of equality.
    NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3
    TOP: 1-2 Example 4 Use Linear Equations to Solve Problems
    KEY: Distributive Property | equation in one variable | inverse operations
15. ANS:
    3
                                             REF: 1-2 Solving Linear Equations
    PTS: 1
                         DIF: L3
    OBJ: 1-2.2 Create and solve linear equations with one variable using the properties of equality.
    NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3
    TOP: 1-2 Example 4 Use Linear Equations to Solve Problems
    KEY: equation in one variable | inverse operations
16. ANS:
    4
    PTS: 1
                         DIF: L3
                                             REF: 1-3 Solving Equations with a Variable on Both Sides
    OBJ: 1-3.1 Use the properties of equality to solve linear equations with a variable on both sides.
    NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3
    TOP: 1-3 Example 1 Solving Equations With a Variable on Both Sides
    KEY: Distributive Property | like terms
17. ANS: B
                         PTS: 1
                                             DIF: L3
```

REF: 1-3 Solving Equations with a Variable on Both Sides

OBJ: 1-3.2 Identify whether linear equations have one solution, infinitely many solutions, or no solution.

NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3

TOP: 1-3 Example 2 Understand Equations With Infinitely Many or No Solutions

KEY: identity | no solution

18. ANS: A PTS: 1 DIF: L3

REF: 1-3 Solving Equations with a Variable on Both Sides

OBJ: 1-3.2 Identify whether linear equations have one solution, infinitely many solutions, or no solution.

NAT: HSA.CED.A.1| HSA.REI.A.1| HSA.REI.B.3

TOP: 1-3 Example 2 Understand Equations With Infinitely Many or No Solutions

KEY: identity | no solution