Period.

Score

Peer Review/corrected score

Chem RG Chapter Packet 2 – Matter & Energy; Mr.Nogales

Assign	Section #	Name			
1.		Assignment Sheet printed	(10 pts)	1	
2.		Notes 2.1	(10 pts)		
3.		Notes 2.2	(10 pts)	
4.		Notes 2.3	(10 pts)	
5.	2.1	WS1.2 Metric Units I / Physical vs. Chemical	(10 pts)		
6.	2.3a	WS 1.3 significant Figures I	(10 pts)		
7.	2.3b	WS 1.7 Metric Units II (Conversions)	(10 pts)	
8.		Unit Conversion Tutorial Part 1	(10 p	ts)	
9. Se	ction and End	of Chapter Summaries using Costa's Levels	of Thinking	(25	pts)

(Total Points = 105 pts

EVIDENCE (after you take notes.) You should have at least 4 types of evidence for each set of notes.

1.	Number new concepts	1,2,3/A,B,C	2.	Delete/Cross out unimportant information	Unimportant
3.	Circle vocab/key terms	Key Terms	4.	Identify points of confusion	?
5.	Underline/Highlight main Ideas	Main Ideas	6.	Identify information to be used on a test, essay	*
7.	Fill in gaps of information. Reword or paraphrase.	^	8.	Create visuals/symbols of important information	Visuals/symbols

Notes:

- 1. Your lab report is turned in by itself and receives a separate grade.(+50 pts)
- 2. You will peer edit and have your editor record a score based on your work.
- 3. For each section, you need to use 2-3 Costa's Levels of Thinking(CLOT)questions and answer the questions.
- 4. Extra credit for doing at least 4 types of evidence (below) for each set of notes/annotate (10 pts).

5. Please note that if you are required to show work, and you do not show your work, you will not receive credit.

6. There is no test review for this chapter. Study your notes.

Ch 2 Accuracy & Precision in Measurement

(You must write-up your lab in your lab notebook)

OBJECTIVES

- **Use** experimental measurements in calculations.
- Organize data by compiling it in tables.
- Compute average value from class data & use it to calculate absolute deviation and average deviation.
- Recognize the importance of accuracy and precision in scientific measurements.
- **Relate** the reliability of experimental data to absolute deviation, average deviation, uncertainty, & percent error.

INTRODUCTION: You will determine the volume of a liquid in two different ways and compare the results. You will also calculate the density of a metal using your measurements of its mass and volume.

$$D = \frac{m}{v}$$

The *experimental error* is calculated by subtracting the accepted value from the observed or experimental value. The *percent error* is calculated according to the following equation.

Percent error = (Observed value - Accepted value) (100) Accepted value

You will average the values for the density of a metal obtained by the entire class to determine the average value. Using this value you will calculate the *average deviation* of these data expressed as the *uncertainty*.

SAFETY: Always wear safety goggles and a lab apron to protect your eyes and clothing.

MATERIALS • 15 cm plastic ru	ller • 25 mL graduated cylinder	• 100 mL beaker	• balance
• 100 mL graduated cylinder	• metal shot (aluminum, copper, lead)	• thermometer, nonn	nercury, 0–100°C

PROCEDURE: After completing each part of the experiment, record your observations in the appropriate data table. PUT YOUR DATA TABLES (ALL 3 OF THEM) ON THE <u>RIGHT</u> SIDE OF YOUR LAB BOOK.

- a. Examine the centimeter scale of the plastic ruler. What are the smallest divisions?
 b. To what fraction of a centimeter can you make measurements with such a ruler?
- **2.** Using the ruler, measure the inside <u>diameter</u> of the 100 mL graduated cylinder. Also, measure the inside <u>height</u> of the cylinder to the 50 mL mark. Record these measurements in Data Table 1.

DATA TABLE 1

Inside diameter of graduated cylinder	mm
Inside height of graduated cylinder	mm

- **3.** Examine the gram scale of the balance.
 - a. What are the smallest divisions?
 - b. To what fraction of a gram can you make measurements with a centigram balance?
- 4. Examine the lines on a 25 mL graduated cylinder
 - a. Find the smallest fraction of a milliliter to which you could make a measurement.
 - b. Does this match the uncertainty of a measurement made with a 100 mL graduated cylinder?
- 5. Using the balance, determine the mass of the dry 25 mL cylinder. Record the mass in Data Table 2.

6. Fill the beaker half full of water and determine its temperature to the nearest degree. Look up the density of water for this temperature, and record both the temperature and water density in Data Table 2.

- 7. a. Fill the cylinder with water to between 10 and 25 mL; accurately read & record the volume.
 - **b.** Find the mass of the water plus the cylinder. Then, record this value in Data Table 2.
 - c. Save the water in the graduated cylinder for use in Step 8.

DATA TABLE 2

Mass of empty graduated cylinder	g
Water temperature	°C
Water density	g/cm ³
Water volume	mL
Mass of graduated cylinder with water	g

8. Add enough metal shot to the cylinder containing the water (saved from Part 2) to increase the volume by at least 5 mL. Determine (a) the volume and (b) the mass of the shot, water, and cylinder. Record your measurements in **DATA TABLE 3** (iust below):

5	
Water volume from step 7	ml
Mass water + graduated cylinder from step 2	g
Volume metal & water	ml
Mass of metal + water + graduated cylinder	g

CLEANUP AND DISPOSAL: Clean your pod, equipment and put away equipment.

WRITE-UP:

Title, Date, Name, Partner's Name, "Carbons", Observations, Calculations, Questions, Conclusions

OBSERVATIONS: Put your observations from the lab in this section of your final write-up.

CALCULATIONS: Show all your calculations. Place your answers in the appropriate calculations table.

- **1.** Calculate the volume of the cylinder to the 50.0-mL graduation ($V = 3.14 > r^2 > h$).
- 2. Calculate the mass of water as measured by the balance.
- 3. Calculate the mass of the water from its measured volume and its density (m = D > V).
- 4. Determine the metal's volume using your measurement of the volume of water displaced by the metal.
- 5. Using your measurements in Data Table 3, determine the mass of the metal.
- **6.** Calculate the density of the metal.
- 7. Record three values obtained by you and your classmates for the density of the <u>same</u> metal. Your group's density <u>g/cm³</u> Group 2 <u>g/cm³</u> Group 3 <u>g/cm³</u>
- **8.** Calculate the average density of these 3 values.

QUESTIONS

- 1. What value of a measurement must be known if trying to determine the accuracy of your measurements?
- 2. List 2 possible sources of experimental error in this lab.

a. b.

CONCLUSIONS

Sarah and Jamal determined the density of a liquid three times. The values they obtained were 2.84 g/cm³, 2.85 g/cm³, and 2.80 g/cm³. The accepted value is known to be 2.40 g/cm³.

- a. Are the values that Sarah and Jamal determined precise? Explain.
- **b.** Are their values <u>accurate</u>? Explain.

HC Ch 2 Matter and Energy

- Section 1 Energy standards Explain that physical & chemical changes in matter involve energy transfer ٠
- Distinguish between heat and temperature ٠
- Convert between Celsius and Kelvin temperature scales. •

	Energy	
The ability to do	. Work - causes a	_oran object.
Many types - all can be	changed into the other. Every chan	ge in matter involves a change in
	Physical Change - inv	olves energy
Changes the Example is evaporation	_of a substance without changing it - steam is still water	s Properties remain the
	Chemical Change - inv	volves energy
changes the Examples:	_of a substance. Products have	properties
rusting iron dissolving in water	burning a log melting ice	grinding spices
	Physical vs. Ch	emical
Signs of a Chemical Chechange in color or odor formation of a gas light or heat	ange f c	formation of a precipitate (solid) hange in
Endothermic Reaction -	energy. Exothermic F	Reactionenergy
Mass cannot be	Conservation of	f Mass hanges.
Energy cannot be	Conservation ofin <u>ordinary</u> changes (not nuc	Energy lear), it can only change form.
Potential - stored energy	Types of Ene	orgy
Kinetic Energy - energy	something has because its	
Heat - the energy that m	something has because its	
Chemical energy - energy	w released or absorbed in a	
Electrical energy - energy	y of	enange.
Padiant Energy - cherg	y that can travel through	(light UV infrared radie)
All trans of success		_ (iigin, Uv, iiiiaieu, iaulo)
An types of energy can	into others.	
II you trace the source f	ar enough back, you will end up at	energy.

		Heat		
Energy transferred between	objects at	temperatures.	Energy can be	as heat.
Heat is than ter A drop of boiling water hur	nperature. ts. A bathtub of boin	t water can kill.	Same temperature	Different heat.
Use Celsius scale (but SI in Water freezes at 0°C. Wate Body temperature 37°C/ Ro Kelvin starts at absolute zer Degrees are the same size C = K - 273 K = C + 273	Measu Kelvin). er boils at 100°C oom temperature 20 - to (-273° C)	aring Temperatu 25°C	re	
Kelvin is always			-gative.	
What is 30° C in Kelvin?	Measu	aring Temperatu 60 Kelvin in °C	re Celsius?	
When ice melts the heat good	Heat Transfer M es intot	Iay Not Affect 7 he ice	Cemperature changing the	
Temperature of melting ice	stays			
Once the ice has	melted, adding	heat t	nen changes the	temperature.
Same thing with water	No tempera	ature change	it has all boil	ed.
Different substances have d It may take 20 minutes to he minutes and the same amoun Specific heat is the amount $J/g^{\circ}C$ water 4.184 aluminum 0.90 copper 0.39 silver 0.24 gold 0.13 iron 0.449 Learning Check	ifferent capacities for eat water to 75°C. H int of copper may tak of heat needed to rais	specific Heat storing energy owever, the sam e only 2 minutes se the temperatur	e mass of aluminum m s to reach the same tem re of 1 g of a substance	ight require 5 perature. by 1°C
$q = m \cdot \Delta t \cdot Cp$ where $q =>$ heat J	$m => mass g \Lambda t =$	- change in temr	perature °C Cn => spe	cific heat J/g•°C
A hot-water bottle c how many joules of heat co	He ontains 750 g of wate ould be transferred to	at Calculations er at 65°C. If the sore muscles?	water cools to body te	mperature (37°C),

 $q = m \cdot \Delta t \cdot C p$ (Show your calculation here)

Answer.____

It takes 102 joules to heat 15.4 g of a metal from 22.0 °C to 33.0°C. What is the specific heat of the metal? (q = $m \cdot \Delta T \cdot C_p$). What metal is it? (see Table 1, p. 60) SHOW YOUR WORK HERE

Answer _____

Iron has a specific heat of 0.449 J/g°C. How much heat will it take to change the temperature of 48.3 g of iron by 32.4°C? Answer . . .? SHOW YOUR WORK HERE

Answer:

2.2 Studying Matter & Energy - Standards

- Describe the scientific method
- Explain the purpose of controlling the conditions of an experiment
- Differentiate between a hypothesis, a theory, and a lawScientific Method

Scientific Method

Model - Explanation of ______ phenomena occur. Not real.

Theory - Broad generalization that ______a body of facts or phenomena.

Hypothesis- an ______as to the cause of the problem or answer to the question.

Experiment- designed to ______ the hypothesis Generates data observations from experiments.

Modify hypothesis - repeat the cycle Cycle repeats many times.

The hypothesis gets more and more _____. Becomes a _____

Theory can never be _____. Useful because it _____behavior

Helps us form mental pictures of processes (models)

Another outcome is that certain behavior is repeated many times

_____is developed, which is a description of ______things _____

Law - _____. Theory - _____

2.3 Measurements & Calculations

- Distinguish between accuracy & precision
- Determine correct significant figures
- Calculate changes in energy using the equation for specific heat and round to correct sig figs
- Write numers in scientific notation
- Start using Dimensional Analysis

Quantitative - use	Types of mea to describe Qualitative -	asurement use descriptionnumber	CS
Which are the following? 4	feet Extra larg		
System: what's being	Surroundings:		
Accuracy - how close a mea	Accuracy vs. surement is to the	Precision	
Precision - how close a serie	s of measurements are to		
Indianta of a ma	Significant	Figures	
Sig figs in a measurement in	clude the known digits plus	a finaldigit	
	Counting S	Sig Figs	
Count all numbers EXCEPT Leading zeros <u>0.00</u> 25. Tra	: ailing zeros without a decimation	al point 2,5 <u>00</u>	
	How many sig figs in th	ne following values?	
458 g	0.0485 g	40.004085 g_	
4085 g	0.04850 g	250 pencils	
4850 g	0.004085 g		
Decimal point "present" - "p Draw a line through the "lea Everything else is significan Only measurements have sig A dozen is <u>exactly</u> 12 (count Classify each of the followir AGold melts at 1064°C	Atlantic/Pacific ocean". Decimal point ding" zeroes until get to the t. 5 figs. Counted numbers are red, so ∞ s.f.) A paper is <u>mean</u> and as an exact (E) or a meas	ic Rule pp nt " <u>a</u> bsent" - "atlantic" first non-zero number. exact (infinite significance) <u>easured</u> 11 inches (2 s.f.). ured (M) number. DThere were 6 hats on the sh	nelf
B1 yard = 3 feet		EA soda can contains 355 ml	L of soda
CA red blood cell diame	eter 6 x 10^{-4} cm		
The # with the Chain is strong as its weakes 3.6 x 653 = (do on your calc s.f So, answer can only ha Same rules for division.	Multiplying or Divid sig figs determines th at link. ulator) 2350.8 is the cal ave 2 s.f Round 2350.8 t	ling with Sig Figs e # of sig figs in the answer. culator answer, but3.6 has 2 s.f. to 2400	while 653 has 3
The last sig fig in a measurer The answer when you add/su So, have to round it to the nu	Adding and subtrac ment <u>always</u> is an estimate. Ibtract cannot be better than Imber with the	ting with sig figs your worst estimate. decimal value.	

Scientific notation: Must have same exponents to add or subtract.

Converting into Sci. Notation: Move decimal until there's 1 digit to its left. Places moved = exponent. Large # (>1) \Rightarrow positive exponent Small # (<1) \Rightarrow negative exponent Only include sig figs in final answer.

Scientific Notation without a calculator (district/state tests) Adding/Subtracting - only if the values have the same exponent. Multiplying - add the exponents. Dividing - subtract the exponents.

Problem solving

 1. Analyze: Identify the ______. Both in words and _______ it will be measured in.

 May need to read the question several times. Identify what is ______.

 Write it down. Maybe draw ______.

 <u>Unnecessary</u> information may also be given.

 Try it with the ______ program

2. Plan a solution

Break it down into steps. Look up needed information.

3. Compute - cancel units, sig figs

4. Evaluate

Sig Figs correct. Units correct. Check your work. Reread the question, did you answer it? Is it reasonable? Estimate (check order of magnitude)

Using Conversions with Dimensional Analysis

The "Factor-Label" Method/Dimensional Analysis Units, or "labels" are canceled, or "factored" out.

- 1. Identify starting & ending units.
- 2. Line up conversion factors so units cancel.
- 3. Multiply all top numbers & divide by each bottom number.
- 4. Check units & answer.

Section 2.1

WS 1.2 - Metric Units I / Physical vs Chemical

1. Fill in each of the blanks with an appropriate unit: mm, cm, m, km, mg, g, kg, mL, L, kL

A. Judy weighed her pen before and after class and found she had used 1.5 ____ of ink. (mass)

B. The empty fish tank weight about 7 ____, and it could hold 43 ____ of water.

- C. The steak I had was huge! It was about 3 ____ thick and must have weighed at least 800 ____.
- D. The anchored hot air balloon was about 35 ____ tall and held about 720 ____ of air.

E. The slot was just 1 ____ too short for the dime to pass through.

- F. The standard archery arrow is 0.85 ____ in diameter, 0.72 ____ long and 0.045 ____ in mass.
- G. It takes about 2 _____ of cayenne pepper on your tongue to make your mouth feel like it's on fire.
- H. The 65 ____ man was so thirsty after running 13 ____ that he drank 1500 ____ of water.

2. Classify each as a <<u>Phy</u>>sical or <<u>Chem</u>>ical property:

_____a. odor _____b. color _____c. flammability

- _____d. density _____e. reaction to acids _____f. melting point
- 3. Classify each as a <<u>Phy</u>>sical or <<u>Chem</u>>ical change:
 - _____a. rusting of iron _____b. boiling of water
 - _____c. burning of sulfur _____d. cooking an egg
 - _____e. digestion of food ______f. sawing of wood
 - _____g. melting of wax _____h. dissolving salt in water

_____i. a leaf turning yellow _____j. baking a cake

mL mL kL Ans (IRO+2): mg kg kg kg L mm cm cm m mg g q km phy phy phy phy chem chem chem chem m phy phy phy phy chem chem chem chem

Section 2.3a

WS 1.3 Significant Figures I

For the followir	<u>ng measurements,</u>	indicate how mar	ny significant figures	<u>s (sf's) there are:</u>
1) 34 g	2) 564 L	3) 19.3 mm	4) 23.45 mg	5) 101 km
6) 3400 g	7) 5040 L	8) 19,000 mm	_ 9) 20 mg	10) 160 km
11) 0.00034 g	12) 0.564 L	13) 0.0019 m	14) 0.5 mg	15) 0.12 km
16) 34.0 g	17) 56.40 L	18) 19.00 m	19) 20.0 mg	20) 8.200 m
21) 34 0 0 g	22) 2000 L	23) 140 mm	24) 19000 mg	25) 6400 km
26) 800 g	27) 800. L	28) 10,900 mm	_ 29) 10.090 mg	. 30) 803 km
31) 1,000,000 g	32) 1,000,001 g	_ 33) 0.05060 m	_ 34) 56 mg	35) 0 m
<u>Ans #1-35 IRO</u> : 1 1 1 1	2 2 2 2 2 2 2 2	2 2 3 3 3 3 3	3 3 3 3 3 3 3 4 4	4 4 4 4 4 5 7 ?

Indicate the # of sig figs for the following:

36) 3.4 x 10³ g ____ 37) 5.64 x10⁸L ___38) 7 x 10⁻⁵mm __39) 2.4 x 10⁴ g ___ 40) 3.61 x 10² m ___ 41) 3.0 x10³ g ____ 42) 5.60 x10⁸ L ___43) 2.04 x10⁴ g ___44) 6.00x10² g ____ 45) 2.0 x10⁰ m ____ Ans #36-45 IRO: 1 2 2 2 2 3 3 3 3 3

Convert between scientific notation and regular notation, without changing the number of sig fig's:

	46) 5700 g = <u>5.7 x 10</u> 3	g	52) 3.6 x 10 ⁵ m = 360000	m
	47) 14,000,000 m =	m	53) 3.6 x 10 ⁻⁵ m =	m
	48) 2,000 cm =	cm	54) 3.60 x 10 ⁵ m =	m
	49) 2,000. cm =	cm	55) 6.00 x 10 ¹ kg =	kg
	50) 0.000043 kg =	kg	56) 6.00 x 10 ² kg =	kg
	51) 0.000230 mg =	mg	57) 3.25 x 10 ³ L =	L
A	Ans #46-57 IRO: 4.3 x 10 ⁻⁵ , 0.00	00036, 2.30 x 10 ⁻⁴ , 60.0	$0, 600., 2 \times 10^3, 2.000 \times 10^3, 3250, 36000$	0, 1.4 x 10 ⁷

Round each of the following off to the specified number of sig fig's: (some have been done for you...)

58) Round 78.241 g to 4 sf: 78.24	3 sf:	2 sf:	_ 1 sf:
59) Round 4.2983 g to 4 sf:	3 sf: 4.30	2 sf:	_ 1 sf:
60) Round 373.99 g to 4 sf:	3 sf:	2 sf: 370	1 sf:
61) Round 50,001 g to 4 sf:	3 sf:	2 sf:	1 sf: 50,000
Ans #58-61 IRO: 4 4.298 4.3 78 78.2	80 374 374.0	400 50,000 50	,000 50,000

				Section 2.3b	Use "King I	Henr	v died "	
WS 1.	7 Metric Unit	t s II (Conv	rsi	ons)	МКН	D d	cmμ	
	Convert eacl	n of the follo	owin	g by dimensional anal	ysis: for full	cre	dit, show all steps:	
1) 25.	.2 cm =	m	2)	25.2 cg = g		3)	25.2 km =	_ m
4) 25.	.2 mL =	_ L	5)	25.2 cm = mr	n	6)	25.2 g =	ĥĝ
7) 0.0	023 µL =	cL	8)	0.023 kg = o	cg	9)	0.023 m =	_ mm
10) 4	500 μm =	Mm	11)) 4500 dL =	μL	12) 4500 dg =	kg

Use this area for scratch paper if needed

 Ans (IRO+3):
 252
 0.0252
 0.252
 25,200,000
 2.52
 0.252
 25,200

 2300
 23
 0.000 002 3
 2300
 450
 0.000 000 004 5
 450,000,000
 0.45

Unit Conv. Tutorial Part 1 Name: Period:

- Go to the following website: http://joneslhs.weebly.com
- Click on the **Learn** button on the left. Read the 5-minute tutorial <u>first</u>. When you think that you understand the idea, go back to the Main Menu and click on One-Step Conversions and complete this worksheet.

Read the directions on the first problem to see how to get started. Work through the challenging problems recording your answer below for each one. Don't forget units! Check your answers online on the website. SHOW YOUR WORK!

One Step Conversions

• For problems 1, 2, and 3 write down what the completed problem looks like. Cancel the units that cancel. Circle the unit that doesn't cancel. Write down the answer to the problem.

1.		=
2.		
		=
3.		
		=

For problems 4-9, you can just write down the answer once you have solved it.

- 4. Calculated Answer:
- 5. Calculated Answer:
- 6. Calculated Answer:
- 7. Calculated Answer:
- 8. Calculated Answer:
- 9. Calculated Answer:

For problem 10, solve it on paper here. Then type in the calculated answer to see if you are correct.

10. Solved problem and answer: