#### The Nature of "Doing Science"

The Scientific Method and Inquiry

#### Two main forms of inquiry in the study of nature

- The word Science is derived from Latin and means "to know"
- \_\_\_\_\_ is the search for information and explanation
- There are two main types of scientific inquiry:
- •

#### **Discovery Science**

• **Discovery science** describes

 This approach is based on observation and the analysis of data

# Types of Data

- <u>Data</u> are recorded observations or items of information
- Data fall into two categories

, or descriptions rather than

measurements

which are sometimes organized into tables and graphs

8-30 march

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

# Induction in Discovery Science

Inductive reasoning

 Repeat specific observations can lead to important generalizations

 For example, "the sun always rises in the east"

# Hypothesis-Based Science

- Observations can lead us to ask questions and propose hypothetical explanations called hypotheses
- A <u>hypothesis</u> is a tentative answer to a well-framed question
- A scientific hypothesis leads to predictions that can be tested by observation or experimentation

#### • For example,

- Observation: Your flashlight doesn't work
- Question: Why doesn't your flashlight work?
- Hypothesis 1: The batteries are dead
- Hypothesis 2: The bulb is burnt out
- Both these hypotheses are testable

#### Deduction: The "If...Then" Logic of Hypothesis Based Science

- uses general uses general premises to make specific predictions
- For example, *if* organisms are made of cells (premise 1), and humans are organisms (premise 2), *then* humans are composed of cells (deductive prediction)

#### A Closer Look at Hypotheses in Scientific Inquiry

- A hypothesis must be testable and falsifiable
- Hypothesis-based science often makes use of two or more alternative hypotheses
- Failure to falsify a hypothesis does not prove that hypothesis
  - For example, you replace your flashlight bulb, and it now works; this supports the hypothesis that your bulb was burnt out, but does not prove it (perhaps the first bulb was inserted incorrectly)

# The Scientific Method

- <u>7 steps of the scientific method</u>
  1.
- 2. Statement of the problem
- 3.
- 4. Design an experiment
- 5.
- 6.
- 7.

#### Observation

May be the most important step.

- Before you can really do anything, you must first notice that something needs to be done.
- Observation is really recognizing a discrepancy.

E.O. Wilson

# Statement of the problem

- Always written as a "what" question.
  - What is the effect of increased temperature on cricket chirps?
  - What is the effect of increased speed on fuel consumption?
    - Stating the observed discrepancy in the manner of a question allows one to develop an answer.
    - What questions lead to a cause and effect. "Why" questions can be answered with a simple "because".



- Defined as an educated guess
- The hypothesis is what you think is the best answer to the question you posed when you stated the problem.
- Best when written in a cause and effect manner.
- When developing a hypothesis, always keep in mind the original observation, and the problem that you are trying to answer.

# Design an experiment

<u>Experiment</u>- is carefully designed to test a specific hypothesis which addresses a particular problem.

 What are some things to think about when designing an Experiment?

# Things to think about when designing an experiment

- $\bullet$  $\bullet$

### Parts of an experiment

- <u>Control</u>: Aspect of the experiment that is held constant so as to have a standard of comparison.
- Independent variable:

• Dependent variable:

• The dependent variable depends on the independent variable

#### Experiment (continued)

- <u>Control group</u>: part of the experiment that is used as a control.
- <u>Constant</u>: factor that does not change throughout experiment
- <u>Experimental group</u>: group with in the experiment which all things are the same as the control group except for one aspect, which is referred to as the <u>variable</u>.

Plan an experiment investigating mealworm behavior.

#### Collect and analyze data

 After the experiment has been conducted, data must be collected and analyzed. Things to think about: Is the data numerical Is it descriptive Are there any statistics that I can use to summarize the information?

#### **Draw Conclusions**

Conclusions are judgments based on an experience and the interpretation of data.

Conclusions can be different. We all have different experience Some conclusions are better than others. The difference between a good biologist and an average biologist may be the ability to draw relevant conclusions

# Report findings

- In the field of Biological research this entails writing papers
- Basically you are responsible for informing the community of your results
- You recognized a gap in our knowledge about the world around us. Once you know the information you need to tell the public so as to fill the gap.
- That means being able to properly communicate

# The cyclical nature of science

 If your hypothesis is not proven correct by your experiment you must reject it, and draw whatever conclusions that you can then develop a new hypothesis and experiment.

# The Myth of the Scientific Method

- The scientific method is an idealized process of inquiry
- Hypothesis-based science is based on the "textbook" scientific method but rarely follows all the ordered steps
- Discovery science has made important contributions with very little dependence on the so-called scientific method

#### A Case Study in Scientific Inquiry: Investigating Mimicry in Snake Populations

- Many poisonous species are brightly colored, which warns potential predators
- Mimics are harmless species that closely resemble poisonous species
- Henry Bates hypothesized that this mimicry evolved in harmless species as an evolutionary adaptation that reduces their chances of being eaten

- This hypothesis was tested with the poisonous eastern coral snake and its mimic the nonpoisonous scarlet kingsnake
- Both species live in the Carolinas, but the kingsnake is also found in regions without poisonous coral snakes
- If predators inherit an avoidance of the coral snake's coloration, then the colorful kingsnake will be attacked less often in the regions where coral snakes are present



#### Field Experiments with Artificial Snakes

- To test this mimicry hypothesis, researchers made hundreds of artificial snakes:
  - An experimental group resembling kingsnakes
    A control group resembling plain brown snakes
- Equal numbers of both types were placed at field sites, including areas without poisonous coral snakes



#### (a) Artificial kingsnake



#### (b) Brown artificial snake that has been attacked

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- After four weeks, the scientists retrieved the artificial snakes and counted bite or claw marks
- The data fit the predictions of the mimicry hypothesis: the ringed snakes were attacked less frequently in the geographic region where coral snakes were found

#### Fig. 1-27

#### RESULTS



#### Designing Controlled Experiments

- A <u>compares an experimental</u> group (the artificial kingsnakes) with a control group (the artificial brown snakes)
- Ideally, only the variable of interest (the color pattern of the artificial snakes) differs between the control and experimental groups
- A controlled experiment means that control groups are used to cancel the effects of unwanted variables
- A controlled experiment does \_\_\_\_\_ mean that all unwanted variables are kept constant

# Limitations of Science

- In science, observations and experimental results must be repeatable
- Science cannot support or falsify supernatural explanations, which are outside the bounds of science

### **Theories in Science**

- In the context of science, a **theory** is:
  - Broader in scope than a hypothesis
  - General, and can lead to new testable hypotheses
  - Supported by a large body of evidence in comparison to a hypothesis

# Model Building in Science

- are representations of natural phenomena and can take the form of:
  - Diagrams

- Three-dimensional objects
- Computer programs
- Mathematical equations

## The Culture of Science

- Most scientists work in teams, which often include graduate and undergraduate students
- Good communication is important in order to share results through seminars, publications, and websites

#### Science, Technology, and Society

The goal of science is

- The goal of technology is
- Science and technology are interdependent
- Biology is marked by "discoveries," while technology is marked by "inventions"

- The combination of science and technology has dramatic effects on society
  - For example, the discovery of DNA by James Watson and Francis Crick allowed for advances in DNA technology such as testing for hereditary diseases
- Ethical issues can arise from new technology, but have as much to do with politics, economics, and cultural values as with science and technology