ENVIRONMENTAL SCIENCE

Essential Standard 5.00: Understand the environmental science industry (water, soils, wildlife and forestry).

Objective 5.01

•Remember careers in the environmental science industry.

MAJOR CAREER AREAS OF Environmental Science

•Water resources

- an essential nutrient for all plant and animal life
- Soil resources
 - the top layer of the Earth's surface, which is suitable for the growth of plant life

MAJOR CAREER AREAS OF Environmental Science

OWildlife

• animals that are adapted to live in a natural environment without the help of humans

• Forestry

• industry that grows, manages, and harvests trees for lumber, posts, panels, paper and many other commodities

- Soil conservationist assists landowners in implementing best land use practices
- Soil scientist– classify soil according to the most appropriate use. Requires bachelor's degree (4 yr)
- Silviculturist– one who scientifically manages forests (specializing in the care of trees)
- Forestry consultant– advises private forest land owners.

• Loggers– one who harvests trees

OUrban Forester-

• the one responsible for the health and well-being of our cities trees

• Wildlife biologist-

• does research on habitat and wildlife and advises government agencies in establishing fish/game laws and habitat improvement programs. Requires minimum of bachelor's degree (4 yr)

○Wildlife manager –

• often work in government agencies , advising land owners and managing game populations on public lands

• Wildlife officer/Game warden-

• works for the agency (North Carolina Wildlife Commission) responsible for controlling the harvest of wildlife

•Soil technician – uses soil auger/soil tube to take soil samples and do technical field work

• Wildlife technician – works in the field tagging animals, gathering data and assisting with research

• Ecologists – studies the effects of the environment on animal life

○ Forester –

• provides assistance in managing forests for the private landowner as well as the commercial grower

O Timber Cruiser –

• are hired by private landowners and companies to estimate tree volume on a tract of land

○Logging foreman –

• is responsible for overseeing and managing logging operations

○ Skidder operators –

• move felled trees form the cutting site to the loading area

OBJECTIVE 5.02

OUnderstand biotechnology in the environmental science industry.

Environmental Biotechnology

•Biotechnology is playing a large part in detecting and monitoring pollution and determining how much is present

Environmental Biotechnology Examples

OIndicator species

- Lichens are widely used as environmental indicators or bio-indicators
- If air is very badly polluted with sulfur dioxide, there may be no lichens present, just green algae may be found

Environmental Biotechnology Examples

•Bioremediation

- Bacteria is used to clean up oil and fuel spills
 Oleophilic (attracted to oil) bacteria used to clean up oil spills
 - •Hanahan, SC, a suburb of Charleston, had an 80,000 gallon jet fuel leak from a military fuel storage facility
 - Ofuel entered the ground and the groundwater
 - Bacteria were successfully used to remediate this problem

ENVIRONMENTAL BIOTECHNOLOGY EXAMPLES

OBiostimulation

The Exxon Valdez clean-up
 OUsed the addition of nutrients
 OFeed the oleophilic bacteria

ENVIRONMENTAL BIOTECHNOLOGY EXAMPLES

• Biodiesel

- made from oilseeds
 - **○**Soybean
 - Ocanola oil
- proven to decrease harmful emissions

Environmental Biotechnology Examples

• Phytoremediation

- Oregon Poplar Site (illegal industrial waste dumping site)
- J-Field at Aberdeen Proving Ground(disposal site of chemical warfare agents, munitions and industrial chemicals)
 - Oused hybrid poplar trees
 - Oremove VOC's
 - Ovolatile organic compounds from contaminated soil

Environmental Biotechnology Examples

OGenetic engineering

• bacterial strains are under development to convert solid waste from humans and livestock into sugar and fuel

LIMITATIONS OF USING BIO AND PHYTOREMEDIATION

OTime

- often considered slower than chemical techniques
- Applicability
 - they do not apply to all situations

• Fear

• those who live near treatment sites often would rather have the contaminated soil removed than treated

•Fear that the process will not uncontaminate the soil

Objective 5.03

• Understand basic environmental science principles and practices.

•Potable Water

- Drinkable-free from harmful chemicals and organisms
- Most of the Earth's water is not fresh water
- OUniversal solvent
 - it dissolves or otherwise changes most other materials

•Water Cycle

- cycling of water between water sources, atmosphere, and surface areas
 - OPrecipitation moisture from rain or snow
 - Evaporation changing from a liquid to a gas
- •Watershed
 - large area in which water is absorbed from rain or melting snow and from which water drains
 - Oacts as a storage system
 - absorbs excess water and releasing it slowly throughout the year

•Water Table

• level below which soil is saturated with water

OTypes of Groundwater

- Capillary
 - Owater that plant roots can absorb
- Free (gravitational)
 - Owater that drains out of a soil after it has been wetted
- Hygroscopic
 - Owater that is held too tightly for plant roots to absorb

OConserving Water and Improving Water Quality

- Ask the right questions
 - •How can we reduce water pollution?
 - •How can soil erosion be reduced?

• What is the most productive use of water and soil without polluting or losing these essential resources?

- Good practices:
 - •Save clean water
 - Oturn off water faucet while brushing teeth
 - Dispose of household products carefully and appropriately.
 - Onever pour paint down the drain as it will eventually enter the water supply
 - OCare for lawns, gardens and farmland carefully
 - Oonly till soil that will not erode excessively and don't over fertilize

SOIL

•Soil Profile

• A Horizon- topsoil

• Surface layer of soil approximately 6" deep.

- Organic matter
 - Otypically darker color
- •Greatest influence on crops
- B Horizon subsoil
 - •Subsurface layer
 - OIncrease in clay content
 - Greatest influence on urban uses (building sites, septic systems, etc.)
- C Horizon parent material (bedrock)
 - •Releases water to the upper soil layers
 - •Contains larger soil particles

Soil Profile

SOIL TEXTURE

• Refers to the size of soil particles

- Sand
 - OLargest soil particle
 - Problems holding enough water for good plant growth
 - OIndividual particles can be seen with the naked eye
 - ODrain well
- Silt
 - •Intermediate size soil particle
 - •Can't be seen with naked eye
- Clay
 - Osmallest soil particle
 - Oholds lots of water
 - may be airtight, infertile for root growth, and associated with wet soils

SOIL STRUCTURE

• Refers to the tendency of soil particles to cluster together

- Single grain
 - Osandy soils
- Granular

Oparticles cling together to form rounded aggregates

- Overy desirable for all soil uses
- Blocky

Oparticles cling together in angular aggregatesOtypical of soils with high clay content

BLOCKY STRUCTURE

GRANULAR

Strong fine and medium granular peds.

STRUCTURE

SOIL CLASSIFICATION

• Land capability maps are based on the physical, chemical, and topographical aspects of the land

- OLand Capability classes are designated by Roman Numerals I – VIII.
 - Class I and II land

Obest land for the most intensive cultivation of field crops Ofewest limitations and can be planted year after year

•Class VII

- very steeply sloping
- best used for planting trees

O3) Class VIII

• land is best suited for wildlife and recreation

SOIL CONSERVATION

OTwo types of erosion

- Sheet removal of layers of soil from the land.
- Gully removal of soil that leaves trenches.

O"No till"

- Crops are planted directly into the residue of a previous crop
- An effective means of erosion control
- Oconventional Tillage
 - disturbs the soil surface by plowing
- Conservation Tillage
 - intermediate tillage system conventional and no-till

SHEET EROSION

Soil accumulated along fencelines could be an indicator

GULLY EROSION

Severe gully erosion.

GULLY EROSION

WILDLIFE MANAGEMENT

•Benefits of Wildlife

- Hunting/Fishing
- Viewing
- Photography
- Environmental Indicator

WILDLIFE ENVIRONMENTS

OFarm

- By-product of the farming operation
 - OLeaving crop residue standing can increase food supply
 - Creating brush piles when harvesting trees provides shelter and cover

• Forest

- Difficult to manage
- Plans should be developed so that timber and wildlife can exist in populations large enough to be sustained and harvested

•Wetland

• Wetlands are the most productive wildlife management area

WILDLIFE ENVIRONMENTS

OStream

• difficult to manage due to continuous flow of water

•Ponds/Lakes

 easier to manage than streams due to water standing and not flowing

OBackyards (urban wildlife)

• birds, butterflies and small mammals can be attracted through use of feeders, houses and proper landscaping

CARRYING CAPACITY

•Number of wildlife that can be supported

• Exceeding the carrying capacity:

- Wildlife is affected by malnutrition, disease, and a reduction in the reproduction cycle
- Habitat quality decreases
 - •A pond with a carrying capacity of 20 fish will decrease if 50 fish are competing for the same food, habitat and oxygen

DEER OVERPOPULATION

Browse Line in Texas

HUNTING AND FISHING

OHelps to maintain the proper carrying capacityOPrevents:

- overpopulation
- malnutrition
- disease
- reduction in reproduction
- decreased wildlife population

EXAMPLES OF WILDLIFE IN NORTH CAROLINA

OHunted Species

• deer, ducks, bear, quail, doves, rabbits

•Songbirds

• Cardinal, robin, chickadee, Eastern bluebird

•Birds of prey

• Red- tailed hawk, Turkey and black vulture

• Fish (freshwater)

largemouth and smallmouth bass, bream, catfish, crappie

FOREST MANAGEMENT

•Northern coniferous forest

- largest region and produces large amounts of pulpwood
- •Pacific Coast Forest
 - most productive of the forest regions
 - some of the largest trees in the world
 - Douglas Fir

Oone of the most important commercially grown trees

FOREST MANAGEMENT

•Southern forests

- Most potential for meeting the future lumber and pulpwood needs of the US
 - •Conifers

• Virginia, loblolly, shortleaf, longleaf and slash pines• Hardwoods

Oak, poplar, maple and walnut

IMPORTANCE OF FORESTS

- Recreation
 - hunting, hiking
- •Wood products
 - lumber, pulpwood, etc.
- •Wildlife habitat
- **O**Filter
 - water and air

SILVICULTURE

• Scientific forest management techniques

•Managing growing timber

• Prescribed thinning

Oremove some trees when competition slows the growth of all trees

Prescribed burning

Oreduce the risk of wildfires

Oeliminates forest litter (fuel)

SILVICULTURE

•Harvesting Timber

- Clear cutting
 - Osystem of harvesting trees where all of the trees in an area are removed
- Selection cutting
 - Orecommended for a forest of trees consisting of different ages and species

•Replacing trees

- Replanting seedlings is a surer method of replacing trees
- Natural seeding
 - Oleast expensive

IDENTIFICATION AND USES OF IMPORTANT TREE SPECIES IN NC

OConifers (softwoods) – needle-type evergreens

- Frazier fir
 - •Most important commercially grown Christmas Tree in NC (mountains)

Odark green ½-1" long singular needle

• Loblolly pine

Opulpwood and plywood

O3 needles/bundle, needles 6-9" long needles.

• Longleaf pine

Olumber, pulpwood and plywood

• 3 needles/bundle, 8-18" long needles

CONIFEROUS

IDENTIFICATION AND USES OF IMPORTANT TREE SPECIES IN NC

OHardwoods – deciduous trees

• Ash

Obaseball bats, handles

Oopposite pinnately compound leaves

- White oak
 - Oflooring, furniture

Oalternate, pinnately lobed leaves,

• Red Maple

Olumber, veneer, cabinets

Oopposite, palmately lobed, 3-5 lobed

DECIDUOUS

MEASUREMENT OF TREES AND LUMBER

OPulpwood

• DBH, merchantable height in feet, cords

• Sawtimber

• DBH, 16 foot logs, board feet

OLumber

• 1 board foot = 144 cubic inches

OBJECTIVE 5.04

• Remember tools and their safety practices related to the environmental science industry.

OBush axe

• Cutting bushes and under growth

OChain saw file

• Sharpening chain saw chain

•Half hatchet

• Cutting and fitting firewood

OIncrement borer

• Checking growth rate of trees

•Planting bar

• Setting out tree seedlings

•Soil auger

• Boring into soil to get samples

OTree diameter tape

• Measure circumference of trees

•Secchi disc

measures turbidity of water

• Clinometer

• used to measure the height of a tree

OTree scale stick

used to measure tree diameter and height

