5.2 I can find domains, vertical asymptotes, and removable discontinuities of rational
functions. (Geometry)
e Every root of the denominator represents an x-value that is excluded from the domain.
Find those roots by factoring the denominator. Write the domain simply as: © # #,
T 7, ...
e If a factor of the denominator is also a factor of the numerator, the factors will cancel.

There will be a removable discontinuity or hole in the graph at the x-value that

makes the canceled root zero. Graph them like this:
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e If the numerator is not divisible by a factor of the denominator, there is a vertical

asymptote at = #, where the # the x-value that makes the factor zero.
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divide to find out whether numerator is divisible by one of the factors:
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divide to find out whether the numerator is divisible by the other factor:
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5.3 1 can find horizontal and oblique asymptotes of rational functions. (Geometry)
e Simplify your fraction first, to find removable discontinuities.
e If the degree of the numerator is less than the degree of the denominator, there is a
horizontal asymptote at ¥ = 0,
e If the degree of the numerator is equal to the degree of the denominator, there may be
a horizontal asymptote at ¥ = #. Get the # by dividing the leading coefficients of the
numerator and denominator.

e If the degree of the numerator is greater than the degree of the denominator, there

may be an gblique asymptote, a.k.a. slant asymptote. Find it by dividing the
< polynomials. The oblique/slant asymptote is ¥ = the quotient (ignoring the

remainder.)

Example: 2r2 + 3 degree of numerator: <

f(z) =

(2z + 5)(2z — 5) degree of denominator: 2

put the numerator and denominator in standard form:
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