Parametric and Polar Curves; Conic Sections "Polar Coordinates"

Section 10.2

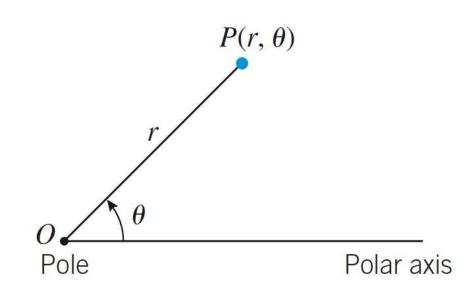
All graphics are attributed to:

 Calculus, 10/E by Howard Anton, Irl Bivens, and Stephen Davis
 Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Introduction

- Sometimes, a point has an "affinity" for a fixed point, such as a planet moving in an orbit under the central attraction of the Sun.
- In such cases, the path is best described by its angular direction and distance from the fixed point.

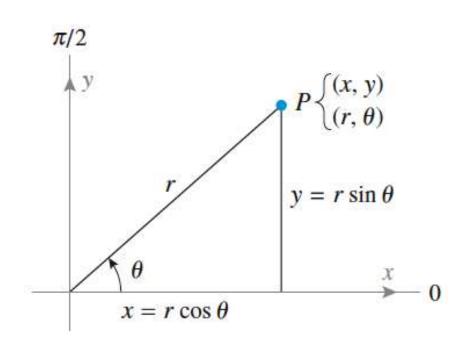
Polar Coordinate Systems



- Origin = (o,o) = the pole
- Ray emanating from the pole = Polar axis
- P(r,) = pair of polar coordinates where:
 - r = radial coordinate
 - = angular coordinate
- Remember, to sweep out clockwise requires .

Relationship Between Polar P(r,) and Rectangular (x,y) Coordinates

- Sometimes, we may need to switch from one form to the other.
- This can be done by "superimposing" a rectangular (x,y)
 coordinate plane on top of a polar
 coordinate plane.



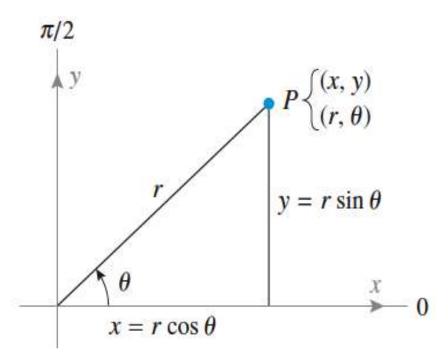
Converting Between Polar P(r,) and Rectangular (x,y) Coordinates

Polar to Rectangular

conversion uses the idea of the unit circle where x is the adjacent leg (cos) and y is the opposite leg (sin). When the radius is not r = 1, then

 $x = r \cos \theta, \quad y = r \sin \theta$

 Rectangular to Polar conversion uses the Pythagorean Theorem and the fact that tan is the ratio of the opposite leg (y) over the adjacent leg (x).



$$r^2 = x^2 + y^2, \quad \tan \theta = \frac{y}{x}$$

Graphs in Polar Coordinates

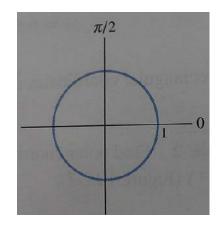
Given an equation in r and , graph in polar coordinates = all of the points with at least one pair of (r,) that satisfy the equation.

- Some easier examples are:
 - r = constant radius
 - = constant angle

Examples of Graphs in Polar Coordinates

r = constant radius
 example: r = 1

(means every point that is one away from the pole)



• = constant angle example: $= -\frac{4}{4}$

(means every point that has an angular direction

 $\pi/4$

of - from the note $\frac{\pi/2}{4}$

Sketch the graph of r = sin in polar coordinates.

- Solution: We can either do this by using substitution or by plotting points. I find substitution to be more efficient.
- I. Substitution
 - Given r = sin ² = r sin • 2 + 2 = v2 + 2 - y = 0 $2 + 2 - y + \frac{1}{4} = 0 + \frac{1}{4}$ $2 + (-\frac{1}{2})^2 = \frac{1}{4}$

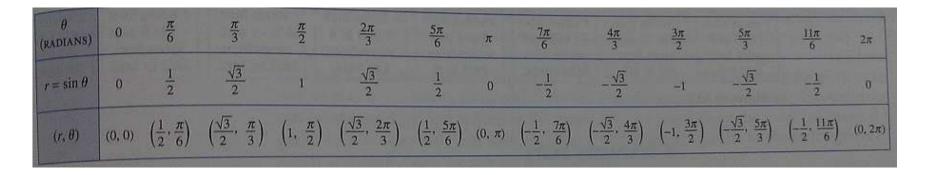
multiply both sides by r $r^2 = x^2 + y^2$ substi $y = r \sin \theta$ and

subtract y from both sides

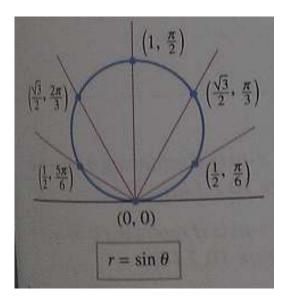
complete the square w/($\frac{-}{2}$)²

factor

Sketch the graph of r = sin in polar coordinates by plotting points.



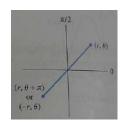
When you plot these points, they form a circle like we found on the previous slide through substitution.

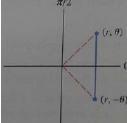


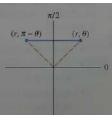
Symmetry Tests

- Testing for symmetry in polar form is similar to testing for symmetry in rectangular form, using substitution.
 - Polar (x) axis symmetry is similar to x-axis symmetry
 - If f() = (-), then the curve is symmetric about the polar axis.
 - Y-axis symmetry: f() = f()
 - Pole (origin) symmetry: f() = f(+)

or (r,) = (-r,)







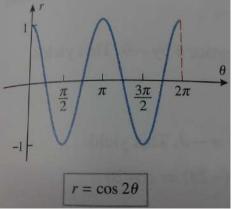
Formal Symmetry Tests Theorem

10.2.1 THEOREM (Symmetry Tests)

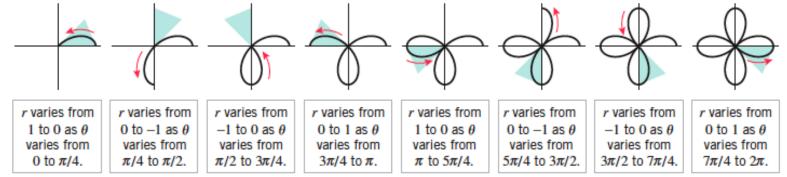
- (a) A curve in polar coordinates is symmetric about the x-axis if replacing θ by $-\theta$ in its equation produces an equivalent equation (Figure 10.2.14a).
- (b) A curve in polar coordinates is symmetric about the y-axis if replacing θ by $\pi \theta$ in its equation produces an equivalent equation (Figure 10.2.14b).
- (c) A curve in polar coordinates is symmetric about the origin if replacing θ by $\theta + \pi$, or replacing r by -r in its equation produces an equivalent equation (Figure 10.2.14c).

Sketch the graph of r = cos 2 in polar coordinates.

First, graph in rectangular coordinates.



Note how r varies as varies to sketch the graph in polar coordinates.

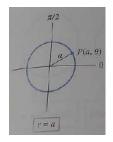


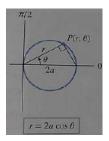
Examples 8 & 9

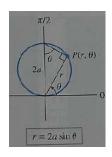
- Read examples 8 & 9 on pg 711-712 and we will go through it in class tomorrow. Do I need to have a quiz to make sure you did it?
 Steps:
 - 1. Check for symmetry (saves so many steps)
 - 2. Rewrite equation in rectangular form
 - 3. Graph the equation in rectangular coordinates
 - 4. Use #3 to produce polar curve
 - 5. Use symmetry in #1 to reflect appropriately

Families of Circles

- If a is a positive constant and the equation is in the following forms, then the graph is a circle.
 - r = a is the basic example from slide #8
 - r = 2a cos has polar axis symmetry

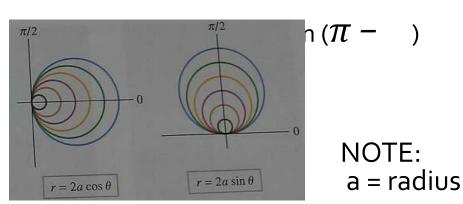






r = 2a sin has y-axis symmetry

Families



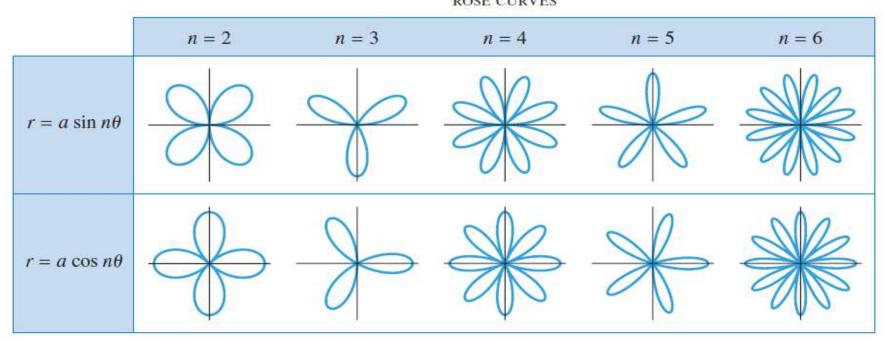
Families of Rose Curves

If a >o and the equation is in the following forms, then the graph is a rose curve.

same reason as

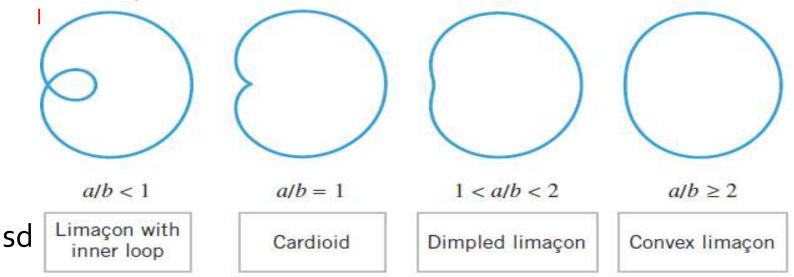
circles

- r = a cos n has polar axis symmetry
- r = a sin n has y-axis symmetry
- Number of petals
 - If n is odd, the rose consists of n equally spaced petals of radius a.
 ROSE CURVES



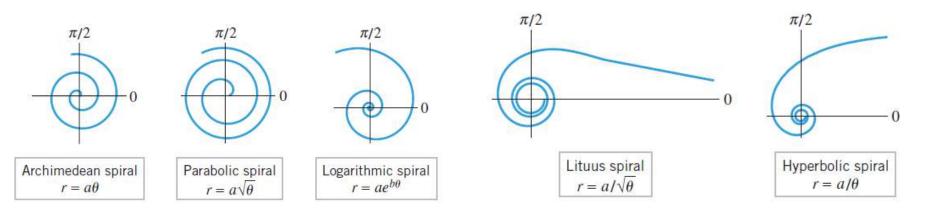
Families of Cardiods and Limacons

- Equations with any of the four forms listed below with a>o and b>o represent polar curves called limacons.
 - r = a + bcos and r = a bcos have polar axis symmetry.
 - r = a + bsin and r = a bsin have y-axis symmetry.
- Limacons have four possible shapes determined by the



Families of Spirals

- A spiral is a curve that coils around a central point.
- Spirals generally have "left-hand" and "right-hand" versions that coil in opposite directions depending on the restrictions on the polar angle and the signs of constants that appear in the equations.
- Below are some of the more common types of spirals, but you will not be tested on spirals.



Spirals in Nature

Spirals of many kinds occur in nature: the shell of a nautilus, sailor's rope, flowers, tusks, galaxies, etc.

© Michael Siu/iStockphoto The shell of the chambered nautilus reveals a logarithmic spiral. The animal lives in the outermost chamber.

© Michael Thompson/iStockphoto A sailor's coiled rope forms an Archimedean spiral.

Courtesy NASA & The Hubble Heritage Team A spiral galaxy.

Golden Gate Bridge

I recently biked across the Golden Gate bridge from San Francisco to Sausalito and Tiburon. This picture is on the ferry back to San Francisco.

