Ch 12 DNA and RNA 12-1DNA **12-2** Chromosomes and DNA Replication 12-3 RNA and Protein Synthesis 12-4 Mutations 12-5 Gene Regulation

12-1 DNA

- All diversity in cells comes from Deoxyribonucleic Acid (DNA)
 - Function is to store and transmit genetic information that informs cells when to make proteins and which proteins to make
- DNA is a chain of <u>Nucleotides</u> composed of a Sugar (deoxyribose), a phosphate group, and a Nitrogen base
- The Nitrogen base is where the DNA differentiates into 4 different characteristics
 - These groups are Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)

12-1 DNA

The DNA is grouped as following Cytosine pairs with Guanine (CG) Adenine Groups with Thymine (AT) They are connected and create a double helix shape with alteration of Deoxyribose sugar and Phosphate create the backbone This pairing of the nitrogen bases and the backbone

are vital in the reproductions of DNA

12-1 DNA Look don't write Notice how the Nitrogen bases are paired A-T and C-G The Sugar and

Phosphate create and guide the double helix

How did DNA get discovered?

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Griffith's experiments

12-1 DNA

- Griffith called this process <u>Transformation</u> because one strain of bacteria had apparently been changed permanently into another
- Griffith's experiment led to others which led to the conclusion- DNA stores and transmits the genetic information from one generation of an organism to the next

12-1 DNA

 A virus that infects bacteria with its DNA to reproduce the virus is known as a Bacteriophage
 Pg 294 (1-5)

12-2 Chromatin and DNA Replication

- Replication- Process of copying DNA
- Eukaryotic chromosomes contain both DNA and protein, tightly packed together to form a substance called Chromatin

The proteins that DNA is wrapped around are called Histones

12-2 Chromatin and DNA Replication

- Enzyme Helicase breaks apart the hydrogen bond between base pairs
- One DNA is split into 2 separate chains an enzyme DNA polymerase replaces the missing half of each DNA Strand
- Mutations which are when errors occur during this replication process have serious effects on new cells

- Helicase breaks the strand apart
- DNA polymerase puts the strand back together with new base pairs to create 2 strands
- Now there are 2 identical DNA Strands so the cell can go through mitosis and form 2 nuclei

BookQuestions

Pg 299 (1-6)

- RNA is responsible for the movement of genetic information from the DNA in the nucleus to site of protein synthesis in the cytosol
- Similar to DNA but sugar is Ribose instead of Deoxyribose, also RNA lacks thymine but has Uracil

- Transcription- The process by which genetic information is copied from DNA to RNA
- RNA polymerase- Enzyme that synthesizes RNA copies from DNA
- Promoters- Marks the beginning of DNA chain to be transcribed
- Termination Signal- The region of a DNA which tells the RNA polymerase that the nucleotide ends

- The production of protein is called Protein Synthesis
- Proteins are polymers like DNA and RNA but they fold up into 3-dimensional shapes and bind with other molecules(building blocks)
- Genetic Code- mRNA sequence that is translated
- Each combination of three mRNA nucleotides is called a Codon
 - Each codon codes for a specific amino acid (Piece of a protein)
- Start Codon = AUG Starts translating RNA
 Stop Codons = UAA, UAG, or UGA Stops Translation

- The process of assembling polypeptides from information encoded in mRNA is called Translation
- The process of translation begins when the RNA leaves the nucleus, migrates to the ribosomes where protein synthesis occurs
- In the ribosome the mRNA codon pairs with its Anticodon.
 - Example- Codon ACA would pair with anti codon UGU since Adenine pairs with Uracil in RNA

Ribosome assembling amino acids into Proteins (translation)

Practice makes perfect

• Pg 306 (1-5)

- Cells make mistakes when copying their own DNA, inserting an incorrect base, or even skipping as base
 - These mistakes are called Mutations
- Mutations come in many shapes and sizes
 - Mutations that affect a single gene are called Gene mutations, but if they affect the entire Chromosome they are called Chromosomal Mutations

 Gene mutations involving changes in one or a few nucleotides are known as Point <u>Mutations</u>

> ORIGNAL SEQUENCE • UGUAC AUG UAU ACG UCU CAA UGA UCCA Met Tyr Ser Thr Gln STOP

> > POINT MUTATIONS

- · UGUAC AUG UAU ACG UCU CAG UGA UCCA Met Tyr Ser Thr Gln STOP
- · UGUAC AUG UAU ACG <u>C</u>CU CAA UGA UCCA Met Tyr Ser Pro Gln STOP
- · UGUAC AUG UA<u>A</u> ACG UCU CAA UGA UCCA Met STOP

If a nucleotide is added or deleted, the bases are still read in groups of three but know the groupings are shifted for every codon, these mutations are called Frameshift mutations

Chromosomal Mutations

 When an organism has more than two sets of chromosomes it is said to be <u>Polyploidy</u>

 Plants and Animal breeders search for these mutations as they produce better (larger)

Questions
Pg 308 (1-5)
Quiz thursday

- A group of genes that operate together is known as a <u>Operon</u>
- E. coli has 4288 protein coding genes
- They are normally grouped and all genes are turned on or off together

Induction of the lac Operon

- Gene regulation is shown easily in E. coli when lactose is present
 - The *lac* genes are turned off by repressors and turned on by the presence of Lactose The repressors bond to the Operator to prevent production of proteins

- Most Eukaryotic genes are controlled individually and have regulatory sequences that are much more complex than those of the lac operon
- Complex organisms must have complex gene control when their cells are going through Differentiation, or creating specialized cells

A series of genes, known as the <u>hox genes</u>, control the differentiation of cells and tissues in the Embryo
 Pg 312 (1-5)

