Agenda

- Warm up
- CM CH 8 10
- Data on Primary Productivity lab

10/1 Understanding Populations Obj. TSW learn about how populations growth rate is measured, and how graphs can represent how populations grow. P. 62NB

- 1. How is Growth rate measured?
- 2. Draw a graph of Exponential growth, what shape is the curve and give an example of an organism with this pattern.
- 3. Compare and Contrast a K- selected species and a r-selected species, how are their graphs different, how are the organisms they represent different?

Growth Rate

- Growth Rate = Births Deaths
 - Movement of individuals = Gene Flow
 - Immigration
 - Emigration
 - (births + immigration) (deaths + emigration) = population change

Factors that Influence Population Size

- Density-dependent factors- the size of the population will influence an individual's probability of survival.
- Density-independent factors- the size of the population has no effect on the individual's probability of survival

Exponential Growth Model

- Growth rate- the number of offspring an individual can produce in a given time period, minus the deaths of the individual or offspring during the same period.
- Intrinsic growth rateunder ideal conditions, with unlimited resources, the maximum potential for growth.

otential for growth. J-shaped curve- when graphed the exponential growth model looks like this.

Time

Logistic Growth Model

- Logistic growth- when a population whose growth is initially exponential, but slows as the population approaches the carrying capacity.
- S-shaped curve- when graphed the logistic growth model produces an "S".

Variations of the Logistic Model

• If food becomes scarce, the population will experience an overshoot by becoming larger than the spring carrying capacity and will result in a die-off, or population crash.

Reproductive Strategies

- K-selected species- the population of a species that grows slowly until it reaches the carrying capacity. Ex. elephants, whales, and humans.
- R-selected species- the population of a species that grows quickly and is often followed by overshoots and die-offs. Ex. mosquitoes and dandelions

TABLE 6.1	Traits of K-selected and r-selected species		
Trait		K-selected species	r-selected species
Life span		Long	Short
Time to reproductive maturity		Long	Short
Number of reproductive events		Few	Many
Number of offspring		Few	Many
Size of offspring		Large	Small
Parental care		Present	Absent
Population growth rate		Slow	Fast
Population regulation independent		Density dependent	Density
Population dynamics		Stable, near carrying capacity	Highly variable

Table 6.1Environmental Science© 2012 W. H. Freeman and Company

Theory of Island Biogeography

• Theory of island biogeography- the theory that explains that both habitat size and distance determine species richness.

Eutrophication p. 53 NB

- 8. Life forms existed in the original pond water.
- Life forms existed in the control for a least two days.
- No life forms were found in the fertilizer water.
- 9. A larger sample of water was needed to collect data Analysis
- 1. The 10 tsp of fertilizer would have the most algae
- 2. Our sample showed no signs of life.
- 3. Did obs. Match predictions?
- 4***** Artificial eutrophication can be prevented by stop the run off of farms & ranches by building a natural watershed – wetlands.

Agenda

- Warm up
- Test Answers
 - Test correction due Monday
 - Monday Population Quiz
- Environmental Science Current Event
- Transecting Biodiversity
 - Species Richness
 - Species Evenness

9/30 Population Growth Rate Obj. TSW learn how to use doubling time and population change problems. P. 62NB

- 1. In the spring time, the population of Dandelion weeds explodes in your yard. If you start with a population of 12 weeds, and the rate is 30%, what is the **doubling time** of your dandelion population?
- 2. You are fed up with these weeds, and don't have time to pull them out by hand. So you spray a pesticide, this slows the rate to 5%, how many days does it take for the little buggers to grow now?
- **3. Population Change** A herd of 5 deer, have 4 fawns, and one buck. One doe without a fawn joins the herd. Two fawns sleep forever from a wolf invasion. One doe leaves the herd as a result. What is the population change?

Answers!

- Doubling time!
- (1) <u>70</u> = <u>70</u> = 2.3 days to get to 24 weeds
 x 30%
- (2) <u>70</u> = <u>70</u> = 14 days to get to 24 weeds
 x 5%
- (3) Herd= 5 + (4+1- 2) + (1-1) = 8 deer

How do Populations change in size

 Global Scale: Birth rate – death rate = growth rate

-b - d = r growth rate (r) can be + or -

- Local Scale: movement from one region to another
 - Immigration # individuals entering a population
 - Emigration # individuals leaving a population

10/1 Population problems

Obj. TSW learn how to proficiently perform population problems. P.64NB

- **1.Doubling Time** The world population is growing at 1.16%, What year will it double from today?
- http://www.worldometers.info/world-population/ World Population Growth,
- 2. Percent Change What is
- the percent change in population From 1960 – 2020?
- 3. Population Change CA has
- 521,265 births, approx. 270,000
- immigrate to CA/year. Deaths in
- CA are 233,143. The Growth

Source: United Nations. 1998. World Population Prospects (The 1998 Revision)

rate in CA is 0%, how many people emigrated?

How Populations are distributed.

(b) Uniform distribution

(c) Clumped distribution

Figure 6.3 *Environmental Science* © 2012 W. H. Freeman and Company

Wetland Presentation

- Groups of 3 or 4
- (1)
- (2)
- (3)
- (4)
- (5)
- Include: