AP[®] CHEMISTRY 2008 SCORING GUIDELINES (Form B)

Question 3

A 0.150 g sample of solid lead(II) nitrate is added to 125 mL of 0.100 M sodium iodide solution. Assume no change in volume of the solution. The chemical reaction that takes place is represented by the following equation.

 $Pb(NO_3)_2(s) + 2 NaI(aq) \rightarrow PbI_2(s) + 2 NaNO_3(aq)$

(a) List an appropriate observation that provides evidence of a chemical reaction between the two compounds.

A precipitate forms with an appearance that is different from that of the dissolving solid	One point is earned for stating that a precipitate is formed
different from that of the dissolving solid.	is formed.

(b) Calculate the number of moles of each reactant.

mol Pb(NO ₃) ₂ = 0.150 g Pb(NO ₃) ₂ × $\frac{1 \text{ mol Pb}(NO_3)_2}{331 \text{ g Pb}(NO_3)_2}$	One point is earned for the correct number of moles of $Pb(NO_3)_2$.
$= 4.53 \times 10^{-4} \text{ mol}$	One point is earned for the correct
mol NaI = $0.100 M \times 0.125 L = 1.25 \times 10^{-2} mol$	number of moles of NaI.

(c) Identify the limiting reactant. Show calculations to support your identification.

mol NaI reacting = 4.53×10^{-4} mol Pb(NO ₃) ₂ × $\frac{2 \text{ mol NaI}}{1 \text{ mol Pb(NO_3)}_2}$	One point is earned for the identification of $Pb(NO_3)_2$.
= 9.06×10^{-4} mol There is 1.25×10^{-2} mol of NaI initially, thus Pb(NO ₃) ₂ is the limiting reactant.	One point is earned for a justification in terms of the relative numbers of moles.

(d) Calculate the molar concentration of $NO_3^{-}(aq)$ in the mixture after the reaction is complete.

$[NO_3^{-}]_f = \frac{2 \times (4.53 \times 10^{-4} \text{ mol})}{0.125 \text{ L}} = 7.25 \times 10^{-3} M$	One point is earned for the correct NO_3^{-}/Pb^{2+} stoichiometry.
	One point is earned for the correct molarity.

AP[®] CHEMISTRY 2008 SCORING GUIDELINES (Form B)

Question 3 (continued)

(e) Circle the diagram below that best represents the results after the mixture reacts as completely as possible. Explain the reasoning used in making your choice.

 PbI_2 precipitates and $Pb(NO_3)_2$ is the limiting reactant, so there is essentially no Pb²⁺ in solution. Because there was so much NaI in excess, some of the I⁻ remains in solution, along with the Na⁺ and NO_3^{-} .

One point is earned for the correct rationale.

3. A 0.150 g sample of solid lead(II) nitrate is added to 125 mL of 0.100 M sodium iodide solution. Assume no change in volume of the solution. The chemical reaction that takes place is represented by the following equation.

 $Pb(NO_3)_2(s) + 2 NaI(aq) \rightarrow PbI_2(s) + 2 NaNO_3(aq)$

- (a) List an appropriate observation that provides evidence of a chemical reaction between the two compounds.
- (b) Calculate the number of moles of each reactant.
- (c) Identify the limiting reactant. Show calculations to support your identification.
- (d) Calculate the molar concentration of $NO_3^{-}(aq)$ in the mixture after the reaction is complete.
- (e) Circle the diagram below that best represents the results after the mixture reacts as completely as possible. Explain the reasoning used in making your choice.

	3A.
ADDITIONAL PAGE FOR ANSWERING QUESTION 3	<u> </u>
a) when a sample of 0.150g solid lead co mittake is added to	
ISGML OF 0. TOOM OF SOMM DOLTAR, a preator-ton will form.	
b) $p_{0}(N_{03})_{2}$: $m_{0}at m_{ass} = 3319$	
0.1509 × IMD/2 PU(ND3), = 4.5×10-4 MOIDS PD(ND3)2-	
331,9	
NOT: 0.125 1/ x 0.1mole = 0.0125 Moles NOT	
Philad in the philad and philad in the phila	
$\frac{O}{1} + \frac{P(NU_3)_2(S)}{V_2(NU_3)_2(S)} + \frac{P(NU_3)_2(S)}{V_2(NU_3)} + \frac{P(NU_3)_2(S)}{$	
<u>c -4.5x10 moles - 4.1x10 + (1.5x10 4 9.1x10 4</u>	
<u>F 0 1-2110 4-212</u>	
 A) NO3⁻ NANO3 IS VERY SOLUME THEREFORE INANDS = INDS-] INANO37 = 9.1710-4 Moles = 7.25 × 10⁻³ M 0.1251- A) O.1251- A) O.1251-<th>le to the oly 1 the ers of 1agram) have</th>	le to the oly 1 the ers of 1agram) have

-15-

3. A 0.150 g sample of solid lead(II) nitrate is added to 125 mL of 0.100 M sodium iodide solution. Assume no change in volume of the solution. The chemical reaction that takes place is represented by the following equation.

$$Pb(NO_3)_2(s) + 2 Nal(aq) \rightarrow Pbl_2(s) + 2 NaNO_3(aq)$$

- (a) List an appropriate observation that provides evidence of a chemical reaction between the two compounds.
- (b) Calculate the number of moles of each reactant.
- (c) Identify the limiting reactant. Show calculations to support your identification.
- (d) Calculate the molar concentration of $NO_3^{-}(aq)$ in the mixture after the reaction is complete.
- (e) Circle the diagram below that best represents the results after the mixture reacts as completely as possible. Explain the reasoning used in making your choice.

-14-

3B2 ADDITIONAL PAGE FOR ANSWERING QUESTION 3 (a) Evidence that a chemical reaction has occurred the precipatite formed in the bottom the container øt 53 × 10" Moles Pb(Mole Ы 150gPb NO 331.220 SMOLES NaJ -100M NaJ 25 4.53×10-4 Noles Pb(NO3 Inole PbI Ċ ୵୰୳ YЬ. MU/PO(NB) 84 .8 Mole Nat 461 MO 202 nol b NOreactant the Ph IMITING 15 9.06 × 10-11 moles NaNO2 2 Mol NaNo3 4.53+10" roles (b d 1000) 1 mol 1251 9. dox 10 " moles NO-<u>.00725</u> NOchoose that one because in the Next picture, a New reaction begans. You can tell because there is a different precipitate in that one. And the I is used UD COMP

3. A 0.150 g sample of solid lead(II) nitrate is added to 125 mL of 0.100 M sodium iodide solution. Assume no change in volume of the solution. The chemical reaction that takes place is represented by the following equation.

$$Pb(NO_3)_2(s) + 2 \operatorname{Nal}(aq) \rightarrow PbI_2(s) + 2 \operatorname{NaNO}_3(aq)$$

- (a) List an appropriate observation that provides evidence of a chemical reaction between the two compounds.
- (b) Calculate the number of moles of each reactant.
- (c) Identify the limiting reactant. Show calculations to support your identification.
- (d) Calculate the molar concentration of $NO_3^{-}(aq)$ in the mixture after the reaction is complete.
- (e) Circle the diagram below that best represents the results after the mixture reacts as completely as possible. Explain the reasoning used in making your choice.

3C2 **ADDITIONAL PAGE FOR ANSWERING QUESTION 3** A) chi ernical ъC Û Ph(NO3)2 R 4.5 XI WV O h h 32 2 Z Pb(NO C Jai 11.1 () The Pb(No. reactant 6 iting DPh NOz) T 9 2NaNO E +7Na 7 Ť +2a T-(A) +

AP[®] CHEMISTRY 2008 SCORING COMMENTARY (Form B)

Question 3

Sample: 3A Score: 9

This response earned 9 points: 1 for part (a), 2 for part (b), 2 for part (c), 2 for part (d), and 2 for part (e).

Sample: 3B Score: 6

The point was earned in part (a). In part (b) 1 point was earned for the correct calculation of the number of moles of $Pb(NO_3)_2$, but the point was not earned for the number of moles of NaI. In part (c) 2 points were earned for the selection of $Pb(NO_3)_2$ as the limiting reactant with a calculation to justify the choice. In part (d) 2 points were earned for the correct calculation of the molar concentration of NO_3^- . The points were not earned in part (e).

Sample: 3C Score: 3

The point was earned in part (a). In part (b) 1 point was earned for the correct calculation of the number of moles of $Pb(NO_3)_2$, but the point was not earned for the number of moles of NaI. In part (c) 1 point was earned for the selection of $Pb(NO_3)_2$ as the limiting reactant, but the justification point was not earned. No points were earned in parts (d) and (e).