Fraction Operations Review thin slicing

<u>WODB</u> opener A) $\frac{1}{20}$ B) $\frac{20}{25}$ C) $\frac{2}{3}$ D) $\frac{5}{4}$

LAUNCH NO EXPLANATION NEEDED	D (source: Increasingly Difficult Questio	ns)
------------------------------	---	-----

A. $\frac{1}{6} + \frac{1}{6}$	G. $\frac{2}{3} + \frac{1}{4} - \frac{11}{12}$
B. $\frac{7}{10} - \frac{3}{10}$	H. $1\frac{1}{8} + 2\frac{3}{4}$
C. $\frac{1}{2} + \frac{1}{4}$	I. $3\frac{2}{5} - 2\frac{2}{10}$
D. $\frac{7}{10} - \frac{2}{5}$	J. $2\frac{14}{15} + 3\frac{3}{8}$
E. $\frac{3}{4} + \frac{5}{6}$	K. $6\frac{2}{3} - 3\frac{4}{10}$
F. $\frac{11}{12} - \frac{7}{9}$	L. $3\frac{5}{6} - 2\frac{1}{2} + 1\frac{7}{9}$

WHAT DO YOU NOTICE IS THE SAME? DIFFERENT? adapted from Increasingly Difficult Questions above

A. $\frac{1}{6} \times \frac{1}{6}$	$H.\ \frac{1}{6}\div\frac{6}{1}$
B. $\frac{7}{10} \times \frac{3}{10}$	I. $\frac{7}{10} \div \frac{3}{10}$
C. $\frac{1}{2} \times \frac{1}{4}$	J. $1\frac{1}{8} \div 2\frac{3}{4}$
D. $\frac{7}{10} \times \frac{2}{5}$	K. $\frac{3}{7} \times \frac{7}{3} + \frac{13}{17}$
E. $\frac{3}{4} \cdot \frac{5}{6}$	L. $6\frac{2}{3} - 3\frac{11}{3}$
F. $\frac{6}{9} \cdot \frac{1}{6}$	M. $\frac{4}{11} \div \frac{36}{99}$
G. $1\frac{1}{8} \cdot 2\frac{3}{4}$	

Keep thinking Option #1 Pipe Flow Fractions either <u>DESMOS</u> or <u>paper</u>

Keep thinking Option #2 source: Beast Academy Practice and GCF/LCM web

Keep thinking Option #3 Yokahu

Keep thinking Option #4 Illustrative Mathematics Task

Lucy has measuring cups of sizes 1 cup, $\frac{1}{2}$ cup, $\frac{1}{3}$ cup, and $\frac{1}{4}$ cup. She is trying to measure out $\frac{1}{6}$ of a cup of water and says, "If I fill up the $\frac{1}{2}$ cup and then pour that into the $\frac{1}{3}$ cup until it is full, there will be $\frac{1}{6}$ of a cup of water left."

- A. Is Lucy's method to measure $\frac{1}{6}$ of a cup of water correct? Explain.
- B. Lucy wonders what other amounts she can measure. Is it possible for her to measure out $\frac{1}{12}$ of a cup? Explain.
- C. What other amounts of water can Lucy measure?

Extension Option #5 adapted from Menu Math

A.	Is less than 1		Has a prime denominator	
C.	Has a denominator greater than 10		Has a composite numerator	
E.	Is fully simplified	F.	Is greater than $\frac{2}{3}$	
G.	Can be rewritten as a terminating decimal	Н.	Has a numerator greater than 20	
I.	Has a numerator greater than its denominator	J.	Is equivalent to $\frac{1}{2}$	

Which constraints pair nicely? Which constraints cannot be paired? Is it possible to solve in 2, 3, or 4 expressions? Describe how and why you built each fraction expression. Be sure to identify which fractions satisfy which constraints.

Fractions 2	2: Build as	few fraction	expressions as	possible to s	satisfy each	constraint at least once.
-------------	-------------	--------------	----------------	---------------	--------------	---------------------------

A.	Equivalent to $\frac{1}{4}$	B.	Is closer to 1 than $\frac{1}{2}$
C.	Has a denominator greater than 6	D.	Is less than $\frac{1}{2}$
E.	Is greater than $\frac{3}{4}$	F.	Has a numerator less than 4

Which constraints pair nicely? Which constraints cannot be paired? Is it possible to solve in 2, 3, or 4 expressions? Describe how and why you built each fraction expression. Be sure to identify which fractions satisfy which constraints.

LAUNCH NO EXPLANATION NEEDED

A.
$$\frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

B. $\frac{7}{10} - \frac{3}{10} = \frac{2}{5}$
C. $\frac{1}{2} + \frac{1}{4} = \frac{3}{4}$
D. $\frac{7}{10} - \frac{2}{5} = \frac{3}{10}$
E. $\frac{3}{4} + \frac{5}{6} = \frac{38}{24} = \frac{19}{12} = 1\frac{7}{12}$
F. $\frac{11}{12} - \frac{7}{9} = \frac{5}{36}$
G. $\frac{2}{3} + \frac{1}{4} - \frac{11}{12} = 0$
H. $1\frac{1}{8} + 2\frac{3}{4} = 3\frac{7}{8}$
I. $3\frac{2}{5} - 2\frac{2}{10} = 1\frac{1}{5}$
J. $2\frac{14}{15} + 3\frac{3}{8} = 6\frac{37}{120}$
K. $6\frac{2}{3} - 3\frac{4}{10} = 3\frac{8}{30} = 3\frac{4}{15}$
L. $3\frac{5}{6} - 2\frac{1}{2} + 1\frac{7}{9} = 3\frac{1}{9}$

WHAT DO YOU NOTICE IS THE SAME? DIFFERENT?

$$\begin{array}{l} A. \frac{1}{6} \times \frac{1}{6} = \frac{1}{36} \\ B. \frac{7}{10} \times \frac{3}{10} = \frac{21}{100} \\ C. \frac{1}{2} \times \frac{1}{4} = \frac{1}{8} \\ D. \frac{7}{10} \times \frac{2}{5} = \frac{14}{50} = \frac{7}{25} \\ E. \frac{3}{4} \cdot \frac{5}{6} = \frac{15}{24} = \frac{5}{8} \\ F. \frac{6}{9} \cdot \frac{1}{6} = \frac{1}{9} \\ G.1 \frac{1}{8} \cdot 2\frac{3}{4} = \frac{9}{8} \cdot \frac{11}{4} = \frac{99}{32} = 3\frac{3}{32} \end{array}$$

$$\begin{array}{l} H. \frac{1}{6} \div \frac{6}{1} = \frac{1}{36} \\ I. \frac{7}{10} \div \frac{3}{10} = \frac{7}{3} \\ J. 1\frac{1}{8} \div 2\frac{3}{4} = \frac{9}{8} \cdot \frac{4}{11} = \frac{9}{22} \\ J. 1\frac{1}{8} \div 2\frac{3}{4} = \frac{9}{8} \cdot \frac{4}{11} = \frac{9}{22} \\ K. \frac{3}{7} \times \frac{7}{3} + \frac{13}{17} = 1\frac{13}{17} \\ L. 6\frac{2}{3} - 3\frac{11}{3} = 0 \\ M. \frac{4}{11} \div \frac{36}{99} = 1 \end{array}$$