1. Given: $\overline{AE} \equiv \overline{CB}$, $\overline{AB} \cong \overline{CD}$, and B is the midpoint of \overline{ED}

Prove: ΔAEB ≅ ΔCBD

(Hint: Draw the information on the picture as you know it.)

statements reasons

1. $\overline{AE} \cong \overline{CB}$, $\overline{AB} \cong \overline{CD}$,

and B is the midpoint of \overline{ED}

2. $\overline{EB} \cong \overline{DB}$

ΔAEB ≅ ΔCBD

1.

2.

3.

2. Given: $\overline{AB} \perp \overline{BE}$, $\overline{DE} \perp \overline{BE}$, $\overline{AC} \cong \overline{DC}$, and $\langle BAC \cong \langle EDC \rangle$

Prove: ∆ABC ≅ ∆DEC

reasons

statements

1. $\overline{AB} \perp \overline{BE}$, $\overline{DE} \perp \overline{BE}$, $\overline{AC} \cong \overline{DC}$, 1.

and <BAC ≅ <EDC

2. <B and <E are right angles 2.

 $3. <B \cong <E$ 3.

4. $\triangle ABC \cong \triangle DEC$ 4.

3. Given:
$$\overline{GK} \cong \overline{ML}$$
, $\langle GKM \cong \langle LMK \rangle$

Prove: ΔGKM ≅ ΔLMK

G		7 K
1		
M	L	
	reasons	

statements

1.
$$\overline{GK} \cong \overline{ML}$$
, $\langle GKM \cong \langle LMK \rangle$

2. $\overline{MK} \cong \overline{MK}$

3. $\Delta GKM \cong \Delta LMK$

1.

2.

3.

Prove: ∆SXT ≅ ∆RXT

Т	\longrightarrow X
R	
	reasons

statements .

- 1. $\langle S \cong \langle R \text{ and } \overline{XT} \text{ bisects } \langle SXR \rangle$
- 2. <SXT ≅ <RXT
- 3. $\overline{XT} \cong \overline{XT}$
- ΔSXT ≅ ΔRXT

- 1.
- 2.
- 3.
- 4.

5. Given: $\overline{FT} \cong \overline{FR}$ and $\overline{ST} \cong \overline{SR}$

Prove: ∆FTS ≅ ∆FRS

statements

1. $\overline{FT} \cong \overline{FR}$ and $\overline{ST} \cong \overline{SR}$

1. 11 = 11 and 01 = 0.

3.

2.

1.

2. Reflexive Property

3.

Prove each of the following:

Given: S is the midpoint of \overline{QT} . $\overline{QR} \parallel \overline{TU}$

Prove $\Delta QSR \cong \Delta TSU$

Given: $\angle N \cong \angle L$ $\overline{JK} \cong \overline{\overline{MK}}$

Prove: $\Delta JKN\cong \Delta MKL$

Given: $\overline{DE} \parallel \overline{FG}$

 $\angle E \cong \angle G$

Prove: $\Delta DFG \cong \Delta FDE$

Given: $\angle D \cong \angle F$

 $\overline{\textit{GE}}$ bisects $\angle \textit{DEF}$

Prove: $\overline{DG} \cong \overline{\overline{FG}}$

Given: $\overline{AB} \cong \overline{\overline{CB}}$ $\angle A \cong \angle C$ \overline{BD} bisects $\angle ABC$

Prove: $\overline{AD} \cong \overline{\overline{CD}}$

