- 1. Is the set of irrational numbers closed under multiplication? Prove or disprove it.
 - Pf: The set of irrational numbers is not closed under multiplication as the following counter example proves. $\sqrt{2} \cdot \sqrt{2} = 2$, 2 is not irrational
- 2. Is the set of multiples of 5 closed under addition? Prove or disprove it.

Pf: Let x, y be any integer. Therefore 5x and 5y are any multiples of 5. 5x + 5y = 5(x+y). Since integers are closed under addition, x+y is an integer. Therefore, 5(x+y) is a multiple of 5. Multiples of 5 are closed under Addition. \square

3. If \bigcirc is a made up operation so that $a \odot b = a^b$, is the set of integers closed under the operation \bigcirc ? Prove or disprove it.

Pf: The set of integers is not closed under the operation \bigcirc as the following counter example proves. $2 \bigcirc -2 = 2^{-2} = \frac{1}{2^2} = \frac{1}{4}$ $\frac{1}{4}$ is not an integer \square

PreCalc Proving Closure Practice

4. Is the set {-1,0,1} closed under multiplication? Prove or disprove it.

PF: The set $\{-1, 0, 1\}$ is closed under Multiplication because $-1 \cdot -1 = 1 \lor 0 \cdot -1 = 0 \lor 1 \cdot -1 = -1 \lor 1$ $-1 \cdot 0 = 0 \lor 0 \cdot 0 = 0 \lor 1 \cdot 0 = 0 \lor 1$ $-1 \cdot 1 = -1 \lor 0 \cdot 1 = 0 \lor 1 \cdot 1 = 1 \lor 1$ This is an example of proof by exhaustion.* 5. Is the set $\{-1, 0, 1\}$ closed under division? Prove or disprove it. Pf: The set $\{-1, 0, 1\}$ is not closed under division as the following counter example proves. $1 \div 0$ does not exist \Box

6. Is the set of fractions with a numerator of 1 (ex.{ ... , -½, ½, ½, ½, ... } closed under multiplication? Is it closed under division? Prove or disprove it.

PF: Let X, Y be integers. So
$$\frac{1}{X}$$
, $\frac{1}{Y}$ are in the set
of fractions with a numerator of 1.
 $\frac{1}{X} \cdot \frac{1}{Y} = \frac{1 \cdot i}{X \cdot Y} = \frac{1}{X \cdot Y}$ Since integers are closed under
Multiplication, XY is an integer. Therefore, the set of
fractions with a numerator of 1 is closed under multiplication.

.

PreCalc Proving Closure Practice

Name: _____

- 7. Is the set of rational numbers closed under addition? Prove or disprove it.
- Pf: Let x, y, a, b be integers. So $\frac{x}{y}$, $\frac{a}{b}$ are rational numbers. $\frac{x}{y} + \frac{a}{b} = \frac{xb}{yb} + \frac{ay}{yb} = \frac{xb + ay}{yb}$. Since integers are closed under multiplication and addition, (xb + ay) and (yb) are integers. So $\frac{xb + ay}{yb}$ is a rational number. Therefore, rational numbers are closed under addition.
- 8. If \bigstar is a made up operation so that $a \bigstar b = a^2 b^2$, is the set of negative integers closed under the operation \bigstar ? Prove or disprove it.
- Pf: The set of negative integers is not closed under the operation : as proves the counter example:

$$-4 - \frac{1}{2} = (-4)^2 - (-2)^2 = |b - 4| = |2$$

|2 is not a negative integer.

- 9. Is the set of even integers closed under addition? Prove or disprove it.
- Pf: Let X, y be integers. So 2x, 2y are even integers. 2x + 2y = 2(x+y) since integers are closed under addition, x+y is an integer. Therefore 2(x+y) is an even integer. Even integers are closed under addition.

PreCalc Proving Closure Practice

10. Is the set of odd integers closed under the following operations? Prove or disprove it for each operation.

a. Addition PF: The set of odd integers is not closed under addition, as proves the following Counter example: 3+5=8

b. Subtraction

Pf: The set of odd integers is not closed under subtraction, as proves the following counter example:

9-3=6 🗆

c. Multiplication

Pf: Let X, y be integers so that 2x+1 and 2y+1 are odd integers. 2x 1 2y <u>4xy 2y</u> 1 <u>2x 1</u> 1 San integer, 2(2xy+x+y)+1. Since 2xy+x+y 1 <u>2x 1</u> 1 Is an integer, 2(2xy+x+y)+1 is an odd integer. Therefore the set of odd integers is closed under Multiplication.

d. Division

Pf: The set of odd integers is not closed under division, as proves the following counter example:

3-5=.6 0