Practice Smells Unit Test

1. Which functional group is shown in the molecule below?

2. What is the functional group of the molecule shown below?

- (A) Lewis dot diagram (B) structural formula
- (C) molecular formula (D) ball-and-stick model

10. The strongest intermolecular forces are

(A) hydrogen bonding (B) Van der Waals forces (C) dipole-dipole interactions (D) London dispersion forces

11. What is the functional group of the molecule pictured below?

(A) ionic (B) polar covalent (C) nonpolar covalent (D) nonpolar ionic

21. The molecule HF (s)

- (A) smells because it fits into a flat receptor site
- (B) smells because it is polar
- (C) does not smell because it is nonpolar
- (D) does not smell because it does not travel into the nose
- 22. Which of the following will smell?
 - (A) small polar molecules
 - (B) metals
 - (C) small nonpolar molecules
- 23. You can only smell molecules that are in this phase.

(A) gas (B) liquid (C) solid (D) aqueous

- 24. In order to smell a liquid,
 - (A) the separate atoms in the liquid join together as they float out and form a molecule that floats to your nose.
 - (B) the molecules in the liquid break apart into atoms that float to your nose.
 - (C) the molecules in the liquid break apart into pieces that float into your nose.
 - (D) the molecules in the liquid float out of the liquid and into your nose.
- 25. Polar molecules
 - (A) are not attracted to a charge
 - (B) do not have partial charges on parts of the molecule
 - (C) are not attracted to each other
 - (D) bend towards a charged wand

26. In a nonpolar covalent bond, the electrons

- (A) are shared equally
- (B) are shared unequally
- (C) are not shared at all
- (D) are not involved in bonding
- 27. Which of these elements has the lowest electronegativity?
 - (A) F (B) At (C) Li (D) Fr

28. If the electronegativity difference between two atoms is extremely large (greater than 2.0), what type of bond will they form?

(A) ionic (B) polar covalent (C) nonpolar covalent (D) nonpolar ionic

- 29. Acetone is polar. Which of the following statements is correct?
 - (A) Acetone will not smell.
 - (B) Acetone will dissolve in water.
 - (C) Acetone will dissolve in hexane.
 - (D) Acetone will not be attracted toward a charged wand.

30. According to the smell rules, which substance should smell but does not?

	(A) copper	(B) salt	(C) water	(D) Styrofoam
--	------------	----------	-----------	---------------

Short Answer

31. Complete the chart below.

Formula	Lewis dot diagram	Number of	Number of Lone	Sketch shape	Name of
		Domains on	Pairs on Central	(use paddles to	Shape
		Central Atom	Atom	show lone	
				pairs)	
AsH ₃					
CBr ₄					

32. What is the functional group of the large molecule shown? (Different views of the same molecules are shown.)

What is the smell of this chemical? Explain your reasoning.

33. Look at the molecule below. The electronegativity of S is 2.58, and Cl is 3.16. Copy this picture on your paper and then answer the following questions.

a. What is the difference in electronegativity of these two atoms? Is this a polar bond?

- b. Draw in the partial negative and partial positive charges.
- b. Using arrows, draw the directions of each dipole, and then draw the overall dipole for the molecule.
- c. Will this molecule smell? Why or why not?

34. A student conducts an experiment with mineral oil. She finds that the oil is not attracted to a charged wand and that oil spreads out when placed onto wax paper. According to these results, is mineral oil polar or nonpolar? Explain your answer.

35. Is the bond in the molecule HBr polar? On which end of the hydrogen bromide molecule would you find a partial negative charge? Would you expect HBr to have a smell? Explain your reasoning.

Formula	Lewis Dot Diagram	Geometry	Shape (name and sketch) *Show direction of all dipoles	Symmet rical shape?	All surroun ding atoms identica 1?	Polar or Nonpolar?	Dissolves in water?	Will it smell?	Type of IMF's?
CH ₄									
H ₂ Se									
NH ₃									
CO ₂									

36. Complete the chart below (Be sure to calculate the electronegativity difference—don't just assume a dipole exists).

37. Using your table of electronegativities, place the bonds in order of increasing polarity: Si—O Si—H I—I

Si—I Si—F

Short Answer

31.

Formula	Lewis dot diagram	Number of	Number of	Structural Formula	Name of
		Domains on	Lone Pairs		Shape
		Central Atom	on Central		
			Atom		
AsH ₃	See teacher for answer	4	1	See teacher for answer	pyramidal
CBr ₄	See teacher for answer	4	0	See teacher for answer	tetrahedral

32. Ketone; minty, because it has the C=O bonded to two carbons on each side (you may also circle the functional group in the structure as your explanation)

33. (a.) 0.58; polar (because the difference is greater than 0.4) (b.) S is δ + and each Cl is δ - (because Cl is more electronegative than S) (c.) The arrows should point toward Cl from S (there should be two arrows for the two polar bonds), The arrow showing the overall dipole should point straight down (d.) Yes, it is polar.

- **34.** Mineral oil is nonpolar because it is not attracted to a charged wand and it does not bead up into a droplet. It does not have charges so cannot be attracted to a charged wand. The molecules are not attracted to each other because the molecules do not have partial charges, so it cannot form a droplet--it spreads out on wax paper.
- **35.** HBr is polar because there is an electronegativity difference of 0.86 between the atoms. The partial negative charge would be on the Br because Bromine has a greater electronegativity then H and more strongly attracts the electrons. HBr would have a smell because it is a polar molecule that can dissolve in water in the nose so it can land on a receptor site.

36.	Comp	lete	the	chart	below.

Formula	Lewis Dot Diagram	Geometry	Shape (name and sketch) *Show direction of all dipoles	Symmet rical shape?	All surroun ding atoms identica 1?	Polar or Nonpolar?	Dissolves in water?	Will it smell?	Type of IMF's?
CH4	See teacher for answer	Tetrahedr al	See teacher for answer	Yes	Yes	Nonpolar	No	No	Londo n dispers ion (or van der waals)
H ₂ Se	See teacher for answer	Tetrahedr al	See teacher for answer	no	Yes	Polar	Yes	Yes	Dipole -dipole interac tions
NH ₃	See teacher for answer	Tetrahedr al	See teacher for answer	no	Yes	Polar	Yes	Yes	Hydro gen bondin g
CO ₂	See teacher for answer	linear	See teacher for answer	yes	yes	nonpolar	no	no	Londo n dispers ion (or van der waals)