Algebra 3 **Polynomials** Assessment Review

Standard: A-APR.B.3

1. Given the function $f(x) = x^3 - x^2 - 10x - 8$

- A. Identify the zeroes of the function.
- B. Describe the end behavior of the function.
- C. Sketch the graph of the function.

2. Use the graph of the 7th degree polynomial to determine the number of real and imaginary roots.

Name:		
Date: _	 	_ Period:

3. Use the graph of the 5th degree polynomial to determine the number of real and imaginary roots.

- 4. Is (x-2) a factor of the function $f(x) = x^3 + 6x^2 - x - 30$? Explain.
- 5. Is (x + 1) a factor if the function $f(x) = x^4 + 3x^3 4x$? Explain.
- 6. Identify the zeroes of the function $f(x) = x^3 + 6x^2 - x - 30$, then write the function in factored form.

7. Identify the zeroes of the function $f(x) = x^4 + 3x^3 - 4x$, then write the function in factored form. 8. Find all the zeroes:

 $f(x) = x^4 + x^3 - 2x^2 + 4x - 24$

9. Write a quadratic function in standard form given one of its zeroes is at $x = 2\sqrt{5}$.

Standard: A-REI.D.11

- 10. Use a graphing calculator to find the approximate intersection(s) to the nearest hundredth.
 - $f(x) = x^{2} + 2x 8$ $g(x) = x^{3} + 3x^{2} 8$
- 11. A table of values is shown for two functions, *f*(*x*) and *g*(*x*). Use the table to identify the point(s) of intersection.

x	f(x)	g(x)
-3	95	-220
-2	20	-28
-1	-1	-4
0	-4	-4
1	-1	-4
2	20	20
3	95	212

- 12. Explain why a table may not be the best way to find the point(s) of intersection of two functions.
- 13. A retirement account contains cash and stock in a company. The functions shown below model the balance B (in thousands of dollars) over the past year. Time, t, is in weeks.

Using a graphing calculator, graph the models from t = 0 to t = 52, with a range of 0 to 20.

 $B_{c}(t) = -0.12 |t - 32| + 13$ $B_{s}(t) = 0.00005t^{4} - 0.00485t^{3} + 0.1395t^{2} - 1.135t + 15.75$

A. Find any points of intersection of the two functions.

B. Interpret the meaning of the intersections in the given context.

Standard: F-IF.B.4

14. Use the graph to identify the roots and their multiplicities.

Root	Multiplicity

- 15. In your own words, describe the behavior of a graph at its roots when the roots have:
 - A. a multiplicity of 1.
 - B. a multiplicity of 2.
 - C. a multiplicity of 3.

16. Fill in the correct bubble to determine if the intervals on the graph shown below are increasing, decreasing or constant.

	Increasing	Decreasing	Constant
x < -4	0	0	0
-3 < x < -2	0	0	0
3 < <i>x</i> < 5	0	0	0
<i>x</i> > 5	0	0	0

17. Fill in the correct bubble to determine if the intervals on the graph shown below are positive or negative.

	Positive	Negative
x < 0	0	0
0 < x < 4	0	0
4 < <i>x</i> < 6	0	0
<i>x</i> > 6	0	0

Use the graph below for numbers 18-19.

- 18. Identify a local maximum and local minimum.
- 19. Identify an absolute minimum.

Standard: F.IF.C.9

20. How will the graph of the function $y = (2x+5)^3$ transform when changed to $y = (2x+5)^3 + 4$?

21. How will the graph of the function $y = (2x+5)^3$ transform when changed to $y = -(2x+5)^3$?

22. Compare the functions below and calculate the requested information. Complete the middle column by comparing the solutions for f(x) and g(x) in each row using <, >, or =.

 $f(x) = 3x^2 - 2x - 5$

f(x)	<,>,	<i>g</i> (x)
	=	
Number of real		Number of real
x-intercepts:		x-intercepts:
Smallest x-		Smallest x-
intercept:		intercept:
Minimum on the		Minimum on the
interval [0, 2] :		interval [0, 2] :
Rate of change		Rate of change
over [-1, 1] :		over [-1, 1] :

B. How do the end behaviors of f(x) and g(x) compare as *x* approaches infinity?

C. Which equation has a smaller local minimum? How do you know?

23. Use your graphing utility to examine the functions below:

$$f(x) = x^{3} + x^{2} - 4x - 1$$
$$g(x) = -x^{2} - 2x + 3$$

A.	Comp	lete	the	chart.
	Comp			e man e

	f(x)	g(x)
Number of real		
x-intercepts		
Smallest		
x-intercept		
Minimum on the		
interval [2, 5]		
Rate of change		
over the interval		
[3,5]		

B. Bubble in the correct function.

	f(x)	g(x)
The function		
with the greater	0	0
number of real	0	U U
x-intercepts.		
The function		
with the smallest	0	0
x-intercept.		
The function		
with the greater	\bigcirc	\cap
minimum on the	0	\bigcirc
interval [2, 5].		
The function		
with a negative	\bigcirc	\cap
rate of change	\cup	U
over the interval		
[3,5].		

C. State the end behavior of f(x) and g(x) as $x \to \infty$.

As $x \to \infty$ then $f(x) \to$ _____ As $x \to \infty$ then $g(x) \to$ _____