Honors Physics - Modified from Unit #13 - Modern Physics/Optics

Targeted Goals from Stage 1: Desired Results

Content Knowledge:

- Einstein's Theory of Relativity: How is it Mass and Energy can be interchanged
- Wave / Particle duality: How do small particles of matter act as both solid particles and as waves?
- Standard Model: The currently accepted scheme explaining the most fundamental particles in nature and how they interact with each other to form the world we live in.
- Energy is quantized
- Materials can absorb and emit energy as determined by their sub atomic structure
- When objects move close to the speed of light with respect to a reference frame, relative measurements of time, mass and size are all effected
- The speed of light in a vacuum is a constant; objects cannot exceed 3 x 108 m/s
- There is a world beyond the bohr model; the fundamental building blocks of the atom involve a newly discovered set of sum-atomic particles
- Radioactive decay of unstable elements results in new elements and the emission of energy
- An atom's nucleus is held together by binding energy, equal to the mass defect of the nucleus.

Optics:

- The speed of light in a vacuum/air 3x108m/s
- Light bends when it changes mediums.
- As a wave's frequency increases, its energy increases
- The smaller (wavelength) a wave, the more damaging it may be to cells, biological entities and biological molecules
- Different E-M waves have specific applications in society based on the wave's size and energy
- Visible light is a small portion of the E-M spectrum
- Light undergoes a Doppler shift and this can be used to understand celestial bodies
- Curved mirrors may make real or virtual images based on their geometry
- The refraction of light is responsible for visible phenomena such as mirages, rainbows and distortion or objects seen underwater
- Telescopes and microscopes are made by combining geometric optical devices (mirrors and lenses)
- Fiber optics and sparkling diamonds to name 2 make use of the total internal refraction of light
- Waves are diffracted when they pass through narrow openings; the Huygens principle explains the behavior of waves after they pass through these opening.

Vocabulary:

- Length contraction
- Time dilation
- Postulate
- Snell's law
- Refraction
- Diffraction

Skills:

- Apply understanding of various principles of physics studied during this course to investigate application of these principles to modern physics.
- Students will be able to apply the laws of reflection and refraction to calculate the position and size of images formed by lenses and mirrors.
- Calculate the index of refraction of a material when given the speed of light in that material.
- Apply Snell's Law to a light ray moving from one medium to another.
- Determining the critical angle for light in different media

Expectation:

		Daily Checks
Description of Task (s):	Resources and Materials:	(Return to Google Classroom or
		snapshots from a cell phone)
Monday:	Google Classroom	Attendance of meeting
Students will be logging on to the	Notes posted on Google	
Google Meets meeting and	Classroom	
attending class on special	Crash Course Relativity Video	
relativity	Physics Girl Relativity Video	
	TED-Ed video on particles	
	Textbook, posted on classroom	
Tuesday:	Same as above	Same as above
Students will attend meeting on		
elementary particles		
Wednesday:	Same as above	Same as above
Students will watch videos on		
special relativity & elementary		
particles		
Thursday:	Same as above	Attendance of meeting
Students will log on to the		Completion of
optional zoom meeting, where		UTexas/Assignment in general of
we work out problems and work		75% or higher
on conceptual understanding		
Friday:	Same as above	Same as above
Students will attend online		
meeting on optics		

Week criteria for success (attach student checklists or rubrics):

Greater than 75 % on Assigned UTexas Assessments, 80% or higher on CCK lab

Supportive resources and tutorials for the week (plans for re-teaching):

□ Textbook; Finalsite resources (Powerpoints, worksheets with answer keys, pdf notes); Khan Academy; Crash Physics videos; PHeT simulators from University of Colorado; Flipping Physics videos; Interactions with teacher using Zoom.