Unit 8 - Forces

RCD Physical Science

Force = Mass x Acceleration

- Force:
 - Can cause a resting object to move
 - **Measuring Force:**
 - Spring scale (weight is a type of force)
 - **Units of Force:**
 - -Newton (N) (force that causes one kg to accelerate at a rate of one meter per second)

-Force can be represented by an arrow $\rightarrow \leftarrow$

Net Force: overall force acting on an object

- Types of forces:
 - Balanced forces: forces on an object are balanced and the net force is 0 (zero)
 - Unbalanced forces: when an unbalanced force acts on an object, the object accelerates

Friction

- All objects are subject to friction!
- Four main types:
 - Static friction
 - Sliding friction
 - Rolling friction
 - Fluid friction

Copyright @ 2007, Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Reaction, Block push Woman back

Static Friction, between Shoes and Floor.

Static Friction

- Friction that acts on objects that are not moving.
- Ex. Pushing a refrigerator, static friction must be overcome before it will move.

Sliding Friction

- Friction that opposes the direction of motion of an object
- Ex. One the refrigerator is moving, the friction between the floor and fridge is sliding friction

Rolling Friction

- Friction that acts on rolling objects
- Rolling friction is less than sliding friction
- Ex. Anything with ball bearings- cars, inline skates, skateboards

Copyright © 2007, Pearson Education. Inc., publishing as Pearson Addison-Wesley.

Fluid Friction

- Fluid friction is the force that opposes the motion of an object in a fluid (mixing cake batter)
- Air resistance is a type of fluid friction (faster the speed- greater the resistance, think about jets and airplane design)

Gravity

- A force that acts between two masses
- Earth's gravity acts downward toward the center of the Earth
- Acceleration due to gravity is 9.8m/s²

It's not just a good idea. It's the Law.

Falling Objects

• Gravity causes objects to accelerate downward, whereas air resistance acts in the direction opposite to the motion and reduces acceleration $9.8mls^2$

Terminal Velocity

 Constant velocity of a falling object when the force of air resistance equals the force of gravity.

Projectile Motion

 http://galileoandeinstein.physics.virginia.edu/ more_stuff/Applets/ProjectileMotion/jarapple t.html Where does our understanding of force and motion come from?

- Aristotle (384 BC– 322BC):
 - Made many scientific discoveries
 - INCORRECTLY proposed that force was required to keep an object moving
 - This proposal held back progress in the study of motion for almost 2000 YEARS!

Galileo (1564-1642)

- Studied how gravity produces constant acceleration
- Moving objects not subjected to friction will keep moving indefinitely

Newton

- Built on the work of other scientists
- Printed Principia this book introduced his 3 laws of motion

Newton

- First Law of Motion: The state of motion of an object does not change as long as the net force action on the object is zero
- Also known as the law of INERTIA
- INERTIA the tendency of an object to resist a change in its motion

INERTIA

Your truck has brakes...the massive hunk of stone doesn't.

fakeposters.com

Newton

- First Law continued...
- "An object at rest tends to remain at rest and an object in motion tends to remain in motion with the same direction and speed until acted on by outside forces"

First Law

- What my demonstration with the penny and cup.
- What happens when I pull away the cardboard?
- Why?
- ANSWER:
- The force was applied on the cardboard and the coin got left behind because of its inertia of rest.

First Law (DON'T WRITE!)

 Reason out what happens to passengers standing in a bus when it moves suddenly.

Imagine that the bus, in the above example comes to a sudden halt. The passengers are thrown forward, unless they hang onto something. This is *inertia of motion*. The same bus gets moving again and goes around a corner at a fast speed. The passengers are thrown outwards. This is *inertia of direction*

Newton's First Law of Inertia

 http://videos.howstuffworks.com/discovery/2 9382-assignment-discovery-newtons-first-lawvideo.htm

Newton Second Law

- How do unbalanced forces affect the motion of an object?
- Answer- an unbalanced force causes an object's velocity to change.
- Mass- the measure of inertia of an object, depends on the amount of matter the object contains.

Second Law

- The acceleration of an object is equal to the new force acting on it divided by the object's mass
- Acceleration = Net Force / Mass

Or F = MA

Practice !!!

- An automobile with a mass of 1000 kg accelerates when the traffic light turns green. If the net force on the car is 4000 newtons, what is the car's acceleration?
- The info. you are given is Force and Mass.
- F = 4000 N and M = 1000 kg
- What do you want to solve for?
- Acceleration! A = F/M
- Acceleration = 4000/1000 = 4 m/s^2
- * In your book page 367- complete 1-4 and turn it in to the basket. Put your name on it!

Warm-Up

- 1) What is Newton's first law known as?
- 2) What is INERTIA?
- 3) What is the formula for Newton's second law? (What do the letters represent?)
- 4) If the force of impact of a bean bag on a person is 100 N and the mass of the bean bag is 2 kg- what was the acceleration of the bean bag prior to it hitting the person?
- 50 m/s^2

Newton's Third Law

- "For every action, there is an equal and opposite reaction"
- Correctly stated- " whenever one object exerts a force on a second object, the second object exerts an equal and opposite force on the first object"

Action and Reaction Forces:

• Bumper Cars!

Action-Reaction Forces

- <u>Swimming!</u>
- Action-Reaction forces propel the swimmer through the water.
- The swimmer pushes against the water and the water pushes the swimmer ahead!
- Remember- action-reaction forces don't cancel!

Action-Reaction Forces

- Not all action-reaction forces create movement.
- Ex. Pushing against the wall (the wall pushes back
)

These forces are equal and opposite

Snoopy's weight If both objects were rolling toward you at the same slow speed, which would be easier to stop?

Now- what if the marble was moving 100 times faster? Which is easier to stop? Which has the greatest momentum?

Momentum

- Momentum- the product of an objects mass and velocity
- An object has a large momentum if the product of its mass and velocity is large.

Momentum = Mass x Velocity

Balanced and Unbalance Forces

- **Balanced Forces = No movement**
- Unbalanced Forces = Movement

Calculate NET FORCE:

Ex. A 150 kg box experiences a 13N force to the right and a 10 N force to the left.

- Draw and label the forces:
- NET FORCE is
- 3 N to the right!

What happens to Momentum when objects collide?

- Law of conservation of momentum
- If no net force acts on a system, then the total momentum of the system does not change
- Ex. Railroad cars, Newton's Cradle
- http://www.lhup.edu/%7Edsimanek/scenari o/newton.htm