Roanoke Valley Governor's School for Science and Technology RVGS Physics Last updated: June, 2022 RVGS Physics is the introductory science course for all first-years students. Topics include motion, forces, momentum, work, and energy. A focused approach allows students to develop a deep factual, conceptual, mathematical, and procedural knowledge of fundamental physics concepts. Skills in technology, statistics, data collection, and experimentation are reinforced by lab activities throughout the course. The primary goals of the course are to improve problem solving skills, correct basic preconceptions about physics, and build a "big picture" foundation for future higher level science courses This course is taught using best practices in gifted education. Each competency is aligned with Hockett's five principles of gifted education: #### **Gifted Education Principles:** (Hockett, J.A. (2009) "Curriculum for Highly Able Learners That Conforms to General Education and Gifted Education Quality Indicators." *Journal of Education for the Gifted*. Vol. 32, No. 3, p. 394-440) - 1. High-quality curriculum for gifted learners uses a conceptual approach to organize or explore content that is discipline based and integrative. - **2.** High-quality curriculum for gifted learners pursues advanced levels of understanding beyond the general education curriculum through abstraction, depth, breadth, and complexity. - **3.** High-quality curriculum for gifted learners asks students to use processes and materials that approximate those of an expert, disciplinarian, or practicing professional. - **4.** High-quality curriculum for gifted learners emphasizes problems, products, and performances that are true to life, and outcomes that are transformational. - **5.** High-quality curriculum for gifted learners is flexible enough to accommodate self-directed learning fueled by student interests, adjustments for pacing, and variety. External standards from Virginia physics Standards of Learning were referenced when reviewing these competencies. To the right of each Enabling Objective is notation indicating alignment with external standards and a relative priority/proficiency rating from A (highest) to D (lowest). #### COMPETENCY I # Students will apply certain basic skills to represent and communicate scientific concepts Enabling Objectives: | ng Objectives: | | |---|-----------| | Develop a qualitative model | PH.1 | | | C, E | | 2. Identify dependent and independent variables | PH. 1 | | | Α | | 3. Make and communicate predictions about variable | PH. 1 | | relationships | F | | 4. Select appropriate measuring devices | PH.1 | | | В | | 5. Communicate accuracy and precision of measurements | PH. 1 | | related to means and standard deviations | C, E, F | | 6. Appropriately use significant figures | Exceeds | | | Standard | | 7. Understand the differences and relationships between | Exceeds | | dimension and units | Standard | | 8. Understand how to use the metric prefixes | Exceeds | | | Standard | | 9. Convert between units algebraically | Exceeds | | | Standard | | 10. Evaluate the resulting units of an algebraic expression | All | | | Standards | | 11. Graph tabular data | PH. 1 | | | С | | 12. Qualitatively interpret graphs | PH.1 | | | f | | | | | 13. Calculate and qualitatively interpret slopes and intercepts | PH.1 | | of linear graphs | C, E | | 14. Derive algebraic models from linear graphs | PH.1 | | | C, E | | 15. Qualitatively interpret the story told by the algebraic | PH.1 | | model | С | | 16. Write a clear summarized communication of a scientific | PH.1 | | investigation | F | | | | #### COMPENTENCY II #### Students will be able to use technology effectively in RVGS Physics Enabling Objectives: | ig Obje | cuves. | | |---------|--|-----------| | 1. | Create word-processed document by controlling: | Exceeds | | | a) formatting (e.g. fonts, margins, text-wrapping, | Standard | | | subscripts, superscripts, tables) | | | | b) graphics (e.g. graphs, equations) | | | | c) saves and prints (e.g file format, pdf, file location) | | | 2. | Create spreadsheets by controlling: | PH.1 | | | a) formats of the cell (e.g. font format, type (e.g. number), orientation) | С | | | b) formulas, including macros | | | | c) graphs of data | | | 3. | Create appropriately formatted graphs using Excel/Logger Pro/ Other Graphing Programs | PH.1
C | | 4. | Log onto the RVGS Canvas site and use the resources for | Exceeds | | | that class. | Standard | | 5. | Use a computer interface connected to a variety of sensors | PH.1 B | | | to collect data for interpretation. | | #### COMPETENCY III ## **Students will develop a particle model of constant velocity** *Enabling Objectives:* | ng Objec | crives: | | |----------|---|-------| | 1. | Choose origin and positive direction for a system | PH.2 | | | | A, B | | 2. | Define motion relative to frame of reference | PH.2 | | | | A, B | | 3. | Distinguish between vector and scalar concepts | PH. 2 | | | | Α | | 4. | Derive linear relationships of constant velocity position | PH.2 | | | graphs | A, B | | 5. | Connect constant velocity to Newton's First Law of | PH. 3 | | | motion | Α | | 6. | Connect motion graphs and vectors | PH. 2 | | | | A, B | | 7. | Relate graphical, algebraic and diagrammatic | PH. 2 | | | representations of constant velocity | A, B | | 8. | Use appropriate units for kinematical properties through | PH. 2 | | | the use of dimensional analysis | | | | | | #### COMPETENCY IV ### Students will develop a particle model of uniform acceleration Enabling Objectives: | Contrast graphs of objects travelling with constant velocity and those undergoing constant acceleration A Contrast motion diagrams of objects travelling with constant velocity and those undergoing constant C Contrast motion diagrams of objects travelling with constant velocity and those undergoing constant | 2 | |---|---| | and those undergoing constant acceleration C PH. A 2. Contrast motion diagrams of objects travelling with PH. | | | PH A 2. Contrast motion diagrams of objects travelling with PH. | | | 2. Contrast motion diagrams of objects travelling with PH. | | | 2. Communication and angular of cojects travelling with | | | constant velocity and those undergoing constant | 1 | | constant velocity and those undergoing constant | | | acceleration PH.: | 2 | | A | | | 3. Define instantaneous velocity as the slope of a tangent to a PH. | 2 | | curve at a distinct time in a position vs. time graph. A, B | 3 | | 4. Distinguish between instantaneous and average velocity PH. | 2 | | A | | | 5. Define acceleration with its vector nature PH.: | 2 | | A | | | 6. Relate and convert from graphs of position, velocity, and PH. | 1 | | acceleration using basic ideas of calculus from slopes and C | | | areas (differentiation and integration) | 2 | | A, B | 3 | | 7. Derive linear and quadratic relationships of uniform PH. | 1 | | acceleration from position and velocity graphs. | | | PH. | 2 | | A, B | 3 | | 8. Learn strategies for solving quantitative motion problems PH. | 2 | | using the kinematics equations of uniform acceleration A, B | 3 | | 9. Apply uniform acceleration concepts to objects undergoing PH. | 2 | | free-fall in one dimension A, B | 3 | #### COMPETENCY V #### Students will develop a free particle model of inertia and force interactions. Enabling Objectives: | 0 9 | | |--|------| | 1. Develop the notion that force is required to change | PH.3 | | velocity, not to produce motion via Newton's First Law | Α | | 2. Recognize that constant velocity does not require an | PH.3 | | explanation | Α | | 3. Identify specific forces acting on an object | PH.3 | | 4. Draw and use accurate free-body diagrams | PH.3 | | 5. Understand the connection between unbalanced forces, | PH.3 | | inertia and acceleration via Newton's Second Law | Α | | 6. Learn and apply strategies for solving quantitative force | PH.3 | | and motion problems | Α | | 7. Identify action/reaction pairs of forces as an application of | PH.3 | | Newton's third law. | Α | | 8. Convert between graphs of Force and graphs of motion | PH.3 | | | Α | #### COMPETENCY VI Students will develop a two dimensional particle model of motion. | 1. Relate and convert graphs of position, velocity, and | PH.2 | |---|-------| | acceleration in two dimensions simultaneously. | A, D | | 2. Solve problems involving uniform acceleration in one | PH.2 | | dimension and constant velocity in another | A, D | | 3. Contrast motion diagrams involving uniform acceleration | PH.2 | | in one and two dimensions | A, D | | 4. Apply to two dimensional free fall and projectile motion | PH. 2 | | problems | D | | 5. Apply to two dimensional circular motion problems | PH.2 | | | С | | 6. Distinguish between speed and velocity in terms of circular | PH.2 | | motion | С | | 7. Identify centripetal acceleration as the radial component of | PH. 2 | | an acceleration of an object moving in a circle | С | #### COMPETENCY VII #### Students will develop a model of impulse and momentum | 1. | Apply previous reasoning from the new perspective of | PH. 4 | |----|--|-------| | | impulse and momentum | Α | | 2. | Learn what is meant by an isolated system | PH.1 | | | | Α | | 3. | Distinguish between momentum and velocity as well as | PH. 4 | | | impulse and force | Α | | 4. | Identify inelastic collisions and isolated systems | PH.4 | | | · | Α | | 5. | Convert between Impulse, momentum, force, and motion | PH.4 | | | graphs of two objects. | Α | | 6. | Learn and apply strategies for solving quantitative | PH. 4 | | | problems using the conservation of momentum | Α | | 7. | Understand how impulse is the action necessary to change | PH.4 | | | the momentum of an isolated system | Α | #### COMPETENCY VIII #### Students will develop a model of work and energy | 1. Develop a concept of energy in terms of its transformatio | n PH.1 | |--|--------| | within and transfer to and from an isolated system to its | Α | | environment | PH.4 | | | В | | 2. Develop a concept of potential energy in terms of work | PH.4 | | done by conservative forces (gravitational, spring, and | В | | electrostatic) | | | 3. Apply conservation of energy to elastic collisions | PH. 4 | | | В | | 4. Learn and apply strategies for solving quantitative | PH. 4 | | problems using the conservation of energy | В | | 5. Identify if work is being done to an isolated system | PH. 4 | | | В | | 6. Identify internal and external forces with respect to an | PH. 4 | | isolated system | В | | 7. Define power as the rate of energy transfer | PH. 4 | | | В | #### COMPETENCY IX #### Students will develop a model of Electrical Circuits | 1. | Develop an understanding of the relationship between | PH. 8 | |----|---|---------| | | Voltage, Current, and Resistance. | В | | 2. | Identify series and parallel circuits and how they affect | PH. 8 | | | Voltage, Current, and Resistance | С | | 3. | Identify the components of basic circuits and each parts | PH. 8 | | | role within the circuit. | Α | | 4. | Demonstrate the ability to measure voltage and current in a | PH. 8 | | | circuit. | A, B, C | | 5. | Be able to build circuits from schematics using | PH. 8 | | | breadboards, LED's, Resistors, switches | Α |