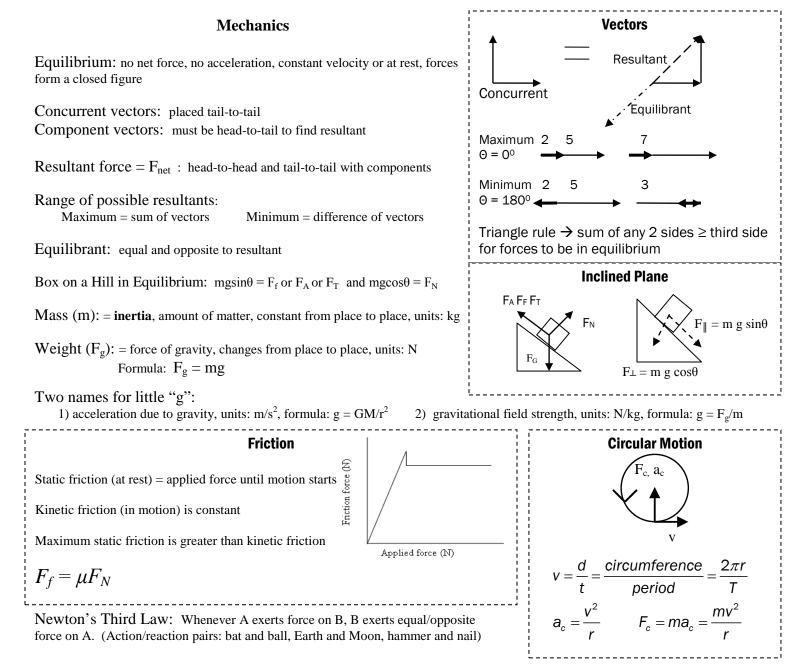
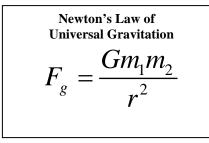

Measurement and Mathematics



Order of magnitude: power of ten (thickness of paper = 10^{-4} m)


Fundamental units

Quantity	Units	Symbol	
Length	meter	m	
Mass	kilogram	kg	
Time	second	S	
Electric current	ampere	А	

Forces are the same but the effects of the forces are not: $m\mathbf{a} = \mathbf{m}a$

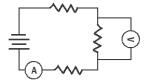
Conservation Laws: electric charge, momentum, mass and energy

Energy	Collisions		
Work: force and displacement must be parallel	Conservation of Momentum: p _{before} = p _{after}		
W = Fd	l Isolated System: no external forces		
Mechanical Energy: $PE_g + PE_s + KE$	Elastic Collision: total KE is conserved		
Total Energy: $PE_g + PE_s + KE + Q$			
Internal Energy = Q: thermal energy, heat due to friction/air resistance	$\begin{array}{ccc} \underline{Sticky} & m_1v_1 + m_2v_2 &= (m_1 + m_2) \cdot v_f \\ (\text{inelastic}) & & \rightarrow & & \rightarrow \\ & \Box & & \Box & & \\ \end{array}$		
Power: rate of change of energy, rate of dong work (units: Watts (W) = J/s)	Bouncy $m_1v_1 + m_2v_2 = m_1v_1 + m_2v_2$ (elastic) $\rightarrow \leftarrow \leftarrow \rightarrow$		
PE_g increases if height increases. KE increases if speed increases. PE_s increases if spring is stretched or compressed.	Remember – Moving to the left gets a NEGATIVE sign!		
Formulas for springs: $PE_s = \frac{1}{2} kx^2$ $F_s = kx$	Equal and opposite forces, impulses,		
k = spring constant (units: N/m)	← → changes in momentum, and contact times		
Conservation of Energy: $E_T = E_T$ $PE_g + PE_s + KE + Q = PE_g + PE_s + KE + Q$	Different speed based on mass m a=M a		
Work-Energy Theorem: $W = \Delta E_T$	mV=Mv		
Electricity	Coulomb's Law $_{-}$ kq_1q_2		
Electricity Conductors (metals) have free electrons, insulators do not	(algorithm formation $F = \frac{\pi q_1 q_2}{1}$		
•	(electric force, electrostatic force) $F_e = \frac{mq_1q_2}{r^2}$		
Conductors (metals) have free electrons, insulators do not	(electric force, electrostatic force) $F_e = \frac{M_1 M_2}{r^2}$ (the protons). Electric Field (units: N/C or V/m) $E = \frac{F_e}{r^2}$		
Conductors (metals) have free electrons, insulators do not Objects become charged by losing or gaining electrons (n	(electric force, electrostatic force) $F_e = \frac{M_1 M_2}{r^2}$ (ot protons). Electric Field (units: N/C or V/m) $E = \frac{F_e}{q}$		
Conductors (metals) have free electrons, insulators do not Objects become charged by losing or gaining electrons (n Elementary Charge: proton or electron	(electric force, electrostatic force) $F_e = \frac{M_1 M_2}{r^2}$ (ot protons). Electric Field (units: N/C or V/m) $E = \frac{F_e}{q}$ Lines go from + to		
Conductors (metals) have free electrons, insulators do not Objects become charged by losing or gaining electrons (n Elementary Charge: proton or electron 1 Coulomb of charge = 6.25×10^{18} elementary charges Charge of Electron: q = -1e OR q = -1.60 x 10 ⁻¹⁹	$F_{e} = \frac{M_{1}T_{2}}{r^{2}}$ (electric force, electrostatic force) $F_{e} = \frac{M_{1}T_{2}}{r^{2}}$ Electric Field (units: N/C or V/m) $E = \frac{F_{e}}{q}$ C Lines go from + to Lines show direction of force on small positive test charge. Field is most intense where field lines are most dense.		
Conductors (metals) have free electrons, insulators do not Objects become charged by losing or gaining electrons (n Elementary Charge: proton or electron 1 Coulomb of charge = 6.25×10^{18} elementary charges Charge of Electron: $q = -1e$ OR $q = -1.60 \times 10^{-19}$ Mass of Electron: $m = 9.11 \times 10^{-31}$ kg Charge of Proton: $q = +1e$ OR $q = +1.60 \times 10^{-19}$	$F_{e} = \frac{N q_{1} q_{2}}{r^{2}}$ (electric force, electrostatic force) $F_{e} = \frac{N q_{1} q_{2}}{r^{2}}$ Electric Field (units: N/C or V/m) $E = \frac{F_{e}}{q}$ C Lines go from + to Lines never cross. Lines show direction of force on small positive test charge. Field is most intense where field lines are most dense. C harge on each		
Conductors (metals) have free electrons, insulators do not Objects become charged by losing or gaining electrons (n Elementary Charge: proton or electron 1 Coulomb of charge = 6.25×10^{18} elementary charges Charge of Electron: $q = -1e$ OR $q = -1.60 \times 10^{-19}$ Mass of Electron: $m = 9.11 \times 10^{-31}$ kg Charge of Proton: $q = +1e$ OR $q = +1.60 \times 10^{-19}$ Mass of Proton: $m = 1.67 \times 10^{-27}$ kg If two or more identical charged spheres touch, the final co is the average charge (total charge/# of spheres). The to	(electric force, electrostatic force) $F_e = \frac{M_1 (q_2)}{r^2}$ $F_e = \frac{M_1 (q_2)}{r^2}$		

Two Unlike Equal Charges

Two Like Equal Charges

Electric potential difference (voltage): work done per unit charge (V = W/q)

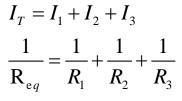

Resistance of a wire: $R = \rho L/A$ where $A = \pi r^2$ Least resistance (best conductor): short, fat, cold Most resistance (worst conductor): long, skinny, hot

Voltmeter: connect in parallel, infinite internal resistance

Ammeter: connect in series, zero internal resistance

Series	Circuit
--------	---------

 $R_{ea} = R_1 + R_2 + R_3$ $V_T = V_1 + V_2 + V_3$


Control: current stays the same

Resistance adds up (greater than greatest)

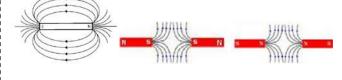
Adding extra resistor increases total resistance and decreases total current.

Parallel Circuit

F	Potential difference	V	Volt	V = J/C
	Current	I	Amps	A = C/s
]	Resistance	R	Ohms	$\Omega = V/A$
ξ	Power	Р	Watts	W = J/s
Ì	Charge	q	Coulombs	С
J	Energy	W	Joules	J = N⋅m

Control: voltage stays the same

Resistance adds down (less than least)


Adding extra resistor decreases total resistance and increases total current.

Resistance: R = V/I

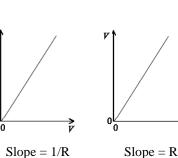
Ohmic Device: follows Ohm's law (Va I at constant T) = constant resistance

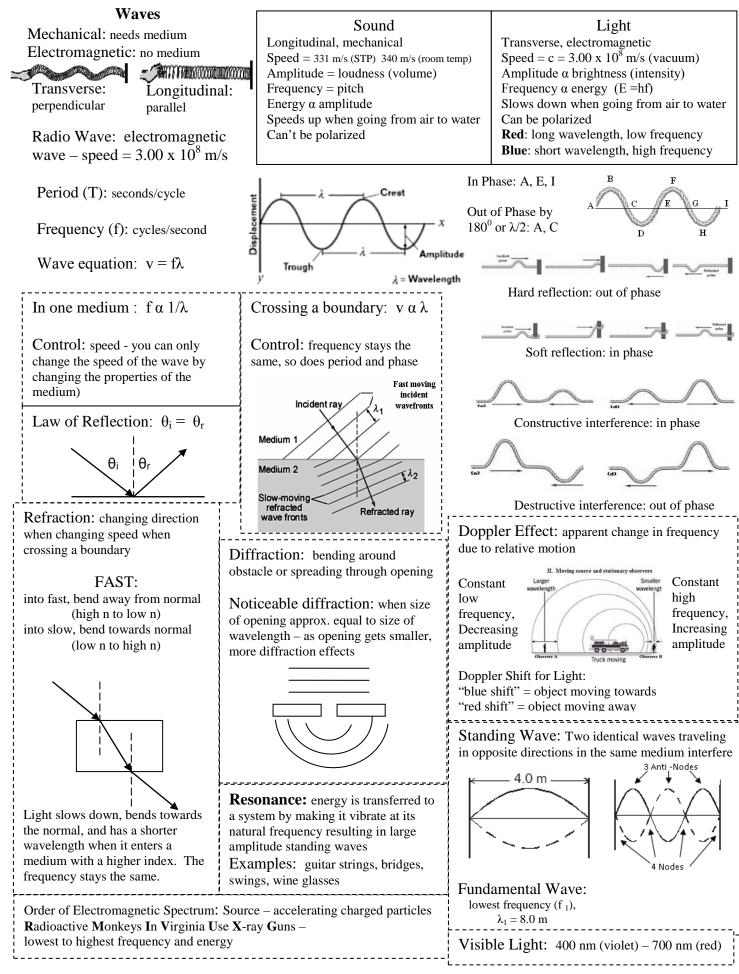
Non-Ohmic Device: resistance not constant (eg. filament lamp)

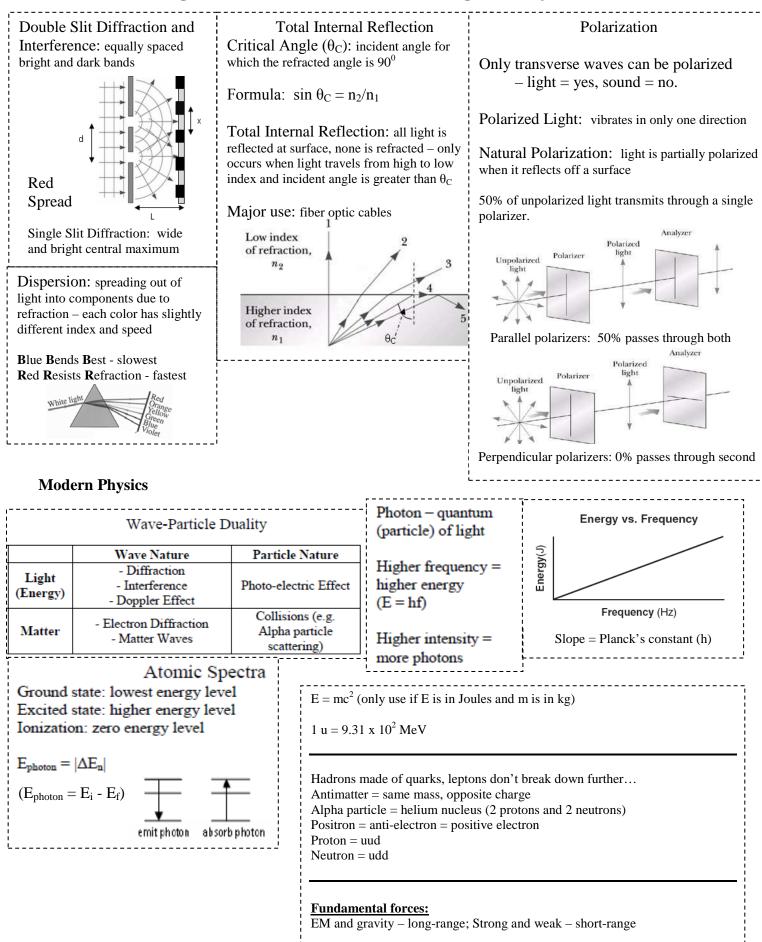
Magnetic Fields From N to S, density = strength (intensity) Direction of lines = direction of compass needle

Mechanical Power: P = W/t = Fd/t = FvElectrical Power: $P = VI = I^2R = V^2/R$

1 electronvolt (eV) = $1.60 \times 10^{-19} \text{ J}$


1 kilowatt hour = $(1000 \text{ W})(1 \text{ hr}) = 3.6 \text{ x } 10^6 \text{J}$


Three units of energy: joules, electronvolts, kilowatt hours


Two Principles of Electromagnetism:

- 1) An electric current (or moving charged particle) generates a magnetic field.
- 2) A changing/moving magnetic field induces an electric current (electromagnetic induction).

	х	×	X
Х	х	x x x	x
х	х	×	x

