Passaic County Technical Institute

Wayne, NJ

Physics Honors 1 Curriculum

August 2015

Physics Honors 1 Curriculum August 2015

I. Course Description

Physics Honors 1 is a college level, algebra based general physics course somewhat similar to a introductory level university physics course. It is intended to be a second course taken after a first course in physics or general science. Students taking this course should have also taken and mastered the algebra 2 course. Some trigonometry is required and the necessary topics will be covered in a short the math methods review which will be an integral part of this advanced high school physics course.

The course covers five general areas in physics. They are Newtonian mechanics, Circular motion and Gravitation, Energy and Momentum, Vibrations and Waves and Introduction to Electricity.

This course has been approved for a maximum of four (4) college credits through Seton Hall University's Project Acceleration Program. The breakdown is as follows:

General Physics I	PHYS 1701-PPC	3 Credits
Physics Lab I	PHYS 1811- PPC	1 Credit

II. Course Objectives/Outline

Content Area:	Physics			Grade(s)	1	10, 11, 12
Unit Plan1 Title:	Forces and Motion		Time	9 Weeks		
			Frame			
Learning Objective	S					
 Given a graph of position or velocity as a function of time, recognize in what time intervals the position, velocity and acceleration of an object are positive, negative, or zero and sketch a graph of each quantity as a function of time PS2.A Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. PS2.A Understand and apply the relationship between the net force exerted on an object, its inertial mass, and its acceleration to a variety o situations. PS2.A Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. HS-PS2-1 Predict the change in momentum of an object from the average force exerted on the object and the interval of time during which the force is exerted. PS2.A Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no 						
Science and Engine	ering Practices	Disciplinary Co	re Ideas			Crosscutting Concepts
Planning and Carry Investigations (pp. 2012) Planning and carryin in 9-12 builds on K-4 progresses to include provide evidence for conceptual, mathema empirical models. • Plan and conduct a individually and coll produce data to serve evidence, and in the	ying out 59- 61, NRC, ag out investigations 8 experiences and e investigations that and test atical, physical, and an investigation aboratively to e as the basis for design: decide on	 PS2.A: Forces a 116, NRC, 2012) Newton's seco predicts changes macroscopic obje 3),(HS-PS2-1) Momentum is c frame of reference the velocity of th PS2-2) If a system inte outside itself, the system can change 	nd Motion nd law acco in the motects. (SLO lefined for ee; it is the e object. (racts with e total mon ge; howeve	n (pp. 114- curately tion of 1, 2 & a particular mass times SLO 5),(HS objects nentum of tl er, any such	r S-	 Cause and Effect (pp. 87-89, NRC, 2012) Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS2-1) Systems can be designed to cause a desired effect. (HS-PS2-3) Systems and System Models (pp. 91-94, NRC, 2012) When investigating or describing a system, the boundaries and initial conditions of the system need to be defined. (HS-PS2-2)

types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS2-1),(HSPS2-3)

Analyzing and Interpreting Data (pp.

61-63, NRC, 2012) Analyzing data in 9– 12 builds on K–8 and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

• Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (SLO 1, 2 & 3), (HS-PS2-1)

Using Mathematics and Computational Thinking (pp. 64-67,

NRC, 2012) Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and change is balanced by changes in the momentum of objects outside the system. (HS-PS2-2),(HS-PS2-3),(SLO 5)

ETS1.A: Defining and Delimiting an Engineering Problem (pp. 204-206, NRC, 2012)

• Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS2-3) ETS1.C:

Optimizing the Design Solution (pp. 208-210, NRC, 2012)

• Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-PS2-3)

Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena (pp. 96-101, Appendix H: NRC, 2013)

• Theories and laws provide explanations in science. (HS-PS2-1)

• Laws are statements or descriptions of the relationships among observable phenomena. (HS-PS2-1)

model data Simple computational	
simulations are created and used based	
on mathematical models of basic	
assumptions.	
• Use mathematical representations of	
phenomena to describe explanations.	
(SLO 1, 2 & 4), (HS-PS2-2)	
Constructing Explanations and	
Designing Solutions (pp. 67-71, NRC,	
2012) Constructing explanations and	
designing solutions in 9–12 builds on	
K-8 experiences and progresses to	
explanations and designs that are	
supported by multiple and independent	
student generated generates of avidence	
student-generated sources of evidence	
consistent with scientific ideas,	
principles, and theories.	
• Apply scientific ideas to solve a	
design problem, taking into account	
possible unanticipated effects. (HS-PS2-	
3	
Common Core	
Common Core Writing Standards:	
WHST.11-12.7 WHST.11-12.9	
Common Core Reading Standards	
RST 11_12 1 RST 11_12 7	

Content Area:	Physics		Grade(s)	10, 11, 12
Unit Plan 2 Title:	Types of Interactions	Time	12 Weeks	
		Frame		
Learning Objective	28			

- Calculate the gravitational force two objects exert on each other in a uniform field. PS2.B 2
- Use mathematical representations of Newton's Law of Gravitation to describe and predict the gravitational forces between objects. HS-PS2-4 3
- Relate the period, orbital radius and speed of an object in a circular orbit, and use the model speed = $2\pi R/T$ to predict unknown quantities. Teacher Note: Students connect this concept to Kepler's third law by replacing the mass of the earth with the mass of the sun and let R represent the radius of orbit of the planet being studied. PS2.B, ESS1.B 4
- Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. HS-ESS1-4 5
- Represent and describe the two types of forces that a surface can exert on an object a normal force, and a friction force parallel to the surface and dependent on the normal force and textures of the two surfaces. PS2.A 6 Use Newton's Second Law along with the mathematical relationship among friction force and normal force to predict unknown quantities involving one-dimensional motion with constant velocity and one-dimensional PS2.A
- Explain contact forces (tension, friction, normal) as arising from interatomic electric forces and their certain directions. PS1.A 8
- Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.* HS-PS2-6

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Science and Engineering Practices Using Mathematics and Computational Thinking Mathematical and computational thinking at the 9– 12 level builds on K– 8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created	 Disciplinary Core Ideas PS2.A: Forces and Motion Newton's second law accurately predicts changes in the motion of macroscopic objects. (SLO 1, 2 & 3) PS1.A: Structure and Properties of Matter Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons. The structure and interactions of matter at the bulk scale are determined by electrical 	 Crosscutting Concepts Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS-PS2-4) Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HSPS2-1),(HS-PS2-5) Systems and System Models
and used based on mathematical models of basic assumptions. • Use mathematical representations of phenomena to describe explanations	forces within and between atoms. PS2.B: Types of Interactions	• When investigating or describing a system, the boundaries and initial conditions of the system need to be defined. (HS-PS2-2)
(HS-PS2- 4) (HS-ESS1-4), (SLO 1, 2, 5 & 6)	Coulomb's law provide the mathematical models to describe and predict the effects of	 Structure and Function Investigating or designing new systems or structures requires a detailed examination of

	gravitational and electrostatic forces	the properties of different materials, the
Obtaining Evaluating and	between distant abjects (US DS2 4)	attractures of different components, and
Obtaining, Evaluating, and	between distant objects. (HS-PS2-4)	structures of different components, and
Communicating Information	• Forces at a distance are explained by fields	connections of components to reveal its
Obtaining, evaluating, and	(gravitational, electric, and magnetic)	function and/or solve a problem. (HS-PS2-6)
communicating information in 9–12	permeating space that can transfer energy	
builds on K-8 and progresses to	through space. Magnets or electric currents	Scale, Proportion, and Quantity
evaluating the validity and reliability of	cause magnetic fields; electric charges or	• Algebraic thinking is used to examine
the claims, methods, and designs.	changing magnetic fields cause electric	exponential growth). (HS-ESS1-4)
Communicate scientific and technical	fields. (HS-PS2-4)	
information (e.g. about the process of	• Attraction and repulsion between electric	
development and the design and	charges at the atomic scale explain the	Connections to Nature of Science
performance of a proposed process or	structure, properties, and transformations of	-
system) in multiple formats (including	matter, as well as the contact forces between	Models, Laws, Mechanisms, and Theories
orally, graphically, textually, and	material objects. (HS-PS2-6) ESS1.B:	Explain Natural Phenomena
mathematically). (HS-PS2-6)		• Theories and laws provide explanations in
	Earth and the Solar System	science. (HS-PS2-1)
	• Kepler's laws describe common features of	• Laws are statements or descriptions of the
	the motions of orbiting objects, including	relationships among observable phenomena.
	their elliptical paths around the sun. Orbits	(HS-PS2-4)
	may change due to the gravitational effects	
	from or collisions with other objects in the	
	solar system. (HS-ESS1-4), (SLO 6)	
Common Core		

- Common Core Writing Standards: WHST.11-12.2 WHST.11-12.7 WHST.11-12.8 WHST.11-12.9
- Common Core Reading Standards: RST.11-12.1, RST.11-12.7

Content Area:	Physics		Grade(s)	10, 11, 12
Unit Plan 3 Title:	Energy	Time	2 Weeks	
		Frame		
Learning Objective	es			

- Identify and quantify the various types of energies within a system of objects in a well-defined state, such as elastic potential energy, gravitational potential energy, kinetic energy, and thermal energy and represent how these energies may change over time. PS3.A, PS3.B 2
- Calculate changes in kinetic energy and gravitational potential energy of a system using representations of that system. PS3.A 3
- Construct an explanation, using atomic-scale interactions and probability, of how a closed system approaches thermal equilibrium when after energy is transferred to it or from it in a thermal process. PS3.A 4
- Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects). HS-PS3-2 5
- Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. HS-PS3-1

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	PS2.B: Types of Interactions	Patterns
Modeling in 9–12 builds on K–8 and	• Newton's law of universal gravitation and	• Different patterns may be observed at each of the
progresses to using, synthesizing, and	Coulomb's law provide the mathematical	scales at which a system is studied and can provide
developing models to predict and show	models to describe and predict the effects	evidence for causality in explanations of
relationships among variables between	of gravitational and electrostatic forces	phenomena. (HS-PS2-4)
systems and their components in the	between distant objects. (HS-PS2-4)	
natural and designed worlds.	 Forces at a distance are explained by 	Cause and Effect
 Develop and use a model based on 	fields (gravitational, electric, and	• Empirical evidence is required to differentiate
evidence to illustrate the relationships	magnetic) permeating space that can	between cause and correlation and make claims
between systems or between	transfer energy through space. Magnets or	about specific causes and effects. (HSPS2-5)
components of a system. (SLO 1),	electric currents cause magnetic fields;	 Cause and effect relationships can be suggested
(HSPS3-2)	electric charges or changing magnetic	and predicted for complex natural and human
	fields cause electric fields. (HS-PS2-	designed systems by examining what is known
Planning and Carrying Out	4),(HS-PS2-5)	about smaller scale mechanisms within the system.
Investigations	• Attraction and repulsion between electric	(HS-PS3-5)
Planning and carrying out investigations	charges at the atomic scale explain the	
to answer questions or test solutions to	structure, properties, and transformations	Structure and Function
problems in 9–12 builds on K–8	of matter, as well as the contact forces	 Investigating or designing new systems or
experiences and progresses to include	between material objects. (HS-PS2-6)	structures requires a detailed examination of the
investigations that provide evidence for	PS3.A:	properties of different materials, the structures of
and test conceptual, mathematical,		different components, and connections of
physical, and empirical models.	Definitions of Energy	components to reveal its function and/or solve a

 Plan and conduct an investigation 	• "Electrical energy" may mean energy	problem. (HS-PS2-6)
individually and collaboratively to	stored in a battery or energy transmitted by	
produce data to serve as the basis for	electric currents. (secondary to HS-PS2-5)	
evidence, and in the design: decide on	PS3.C: Relationship Between Energy and	Connections to Nature of Science
types, how much, and accuracy of data	Forces	
needed to produce reliable	• When two objects interacting through a	Science Models, Laws, Mechanisms, and
measurements and consider limitations	field change relative position, the energy	Theories Explain Natural Phenomena
on the precision of the data (e.g.,	stored in the field is changed. (HS-PS3-5)	 Theories and laws provide explanations in
number of trials, cost, risk, time), and		science. (HS-PS2-4) • Laws are statements or
refine the design accordingly. (HS-PS3-		descriptions of the relationships among observable
3)		phenomena. (HS-PS2-4)
Using Mathematics and		
Computational Thinking		
Mathematical and computational		
thinking at the 9–12 level builds on K–		
8 and progresses to using algebraic		
thinking and analysis, a range of linear		
and nonlinear functions including		
and logarithms, and computational tools		
for statistical analysis to analyze		
represent and model data Simple		
computational simulations are created		
and used based on mathematical models		
of basic assumptions		
Create a computational model or		
simulation of a phenomenon designed		
device, process, or system, (SLO 1 & 2)		
(HS-PS3-1), (HS-PS3-2)		
Constructing Explanations and		
Designing Solutions		

Constructing explanations and designing		
solutions in 9–12 builds on K–8		
experiences and progresses to		
explanations and designs that are		
supported by multiple and independent		
student-generated sources of evidence		
consistent with scientific ideas,		
principles, and theories.		
• Design, evaluate, and/or refine a		
solution to a complex real-world		
problem, based on scientific knowledge,		
student-generated sources of evidence,		
prioritized criteria, and tradeoff		
considerations. (HS-PS3-3)		
Common Core		
Common Core Writing Standard	ds:	
WHST.11-12.7, WHST.9-12.9		
Common Core Reading Standar	ds:	
RST.11-12.1, RST.11-12.7		

Content Area:	Physics		Grade(s) 10, 11, 12
Unit Plan 4 Title:	Electricity and Magnetism	Time Frame	7 Weeks

Learning Objectives

- Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. HS-PS3-5 2
- Use mathematical representations of Coulomb's Law to describe and predict the electrostatic forces between objects. HS-PS2-4 3
- Make predictions about the sign and relative quantity of net charge of objects or systems after various charging processes. PS2.B 4
- Construct an explanation of a model of electric charge, and make a qualitative prediction about the distribution of positive and negative electric charges within neutral systems as they undergo various processes. PS2.B 5
- Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current. HS-PS2-5 6

- Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials. HS-PS2-5
- Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy HS-PS2-6

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Planning and Carrying Out	PS2.B: Types of Interactions	Patterns
Investigations	• Newton's law of universal gravitation	• Different patterns may be observed at each of the
Planning and carrying out	and Coulomb's law provide the	scales at which a system is studied and can provide
investigations to answer questions or	mathematical models to describe and	evidence for causality in explanations of phenomena.
test solutions to problems in 9–12	predict the effects of gravitational and	(HS-PS2-4)
builds on K-8 experiences and	electrostatic forces between distant	
progresses to include investigations	objects. (HS-PS2-4)	Cause and Effect
that provide evidence for and test	• Forces at a distance are explained by	• Empirical evidence is required to differentiate between
conceptual, mathematical, physical	fields (gravitational, electric, and	cause and correlation and make claims about specific
and empirical models.	magnetic) permeating space that can	causes and effects. (HSPS2-5)
• Plan and conduct an investigation	transfer energy through space. Magnets	• Cause and effect relationships can be suggested and
individually and collaboratively to	or electric currents cause magnetic	predicted for complex natural and human designed
produce data to serve as the basis for	fields; electric charges or changing	systems by examining what is known about smaller
evidence, and in the design: decide on	magnetic fields cause electric fields.	scale mechanisms within the system. (HS-PS3-5)
types, how much, and accuracy of data	(HS-PS2-4),(HS-PS2-5)	
needed to produce reliable	• Attraction and repulsion between	Structure and Function
measurements and consider limitations	electric charges at the atomic scale	• Investigating or designing new systems or structures
on the precision of the data (e.g.,	explain the structure, properties, and	requires a detailed examination of the properties of
number of trials, cost, risk, time), and	transformations of matter, as well as the	different materials, the structures of different
refine the design accordingly. (HS-	contact forces between material objects.	components, and connections of components to reveal
PS2-5)	(HS-PS2-6) PS3.A	its function and/or solve a problem. (HS-PS2-6)
Using Mathematics and	Definitions of Energy	
Computational Thinking	• "Electrical energy" may mean energy	
Mathematical and computational	stored in a battery or energy transmitted	
thinking at the $9-12$ level builds on	by electric currents (secondary to HS-	
K-8 and progresses to using algebraic	PS2-5) PS3 C [•]	
thinking and analysis, a range of linear		

and nonlinear functions including	Relationship Between Energy and	
trigonometric functions, exponentials	Forces	
and logarithms, and computational	 When two objects interacting through 	
tools for statistical analysis to analyze,	a field change relative position, the	
represent, and model data. Simple	energy stored in the field is changed.	
computational simulations are created	(HS-PS3-5)	
and used based on mathematical		
models of basic assumptions.		
• Use mathematical representations of		
phenomena to describe explanations.		
(HS-PS2- 4)		
Obtaining, Evaluating, and		
Communicating Information		
Obtaining, evaluating, and		
communicating information in 9–12		
builds on K–8 and progresses to		
evaluating the validity and reliability		
of the claims, methods, and designs.		
Communicate scientific and		
technical information (e.g. about the		
process of development and the design		
and performance of a proposed		
process or system) in multiple formats		
(including orally, graphically,		
textually, and mathematically). (HS-		
PS2-6)		
Developing and Using Models		
Modeling in 0, 12 byilds on V. 9 and		
prograsses to using synthesizing and		
developing models to predict and		
above relationshing among variables		
snow relationships among variables		

between systems and their			
components in the natural and			
designed worlds.			
• Develop and use a model based on			
evidence to illustrate the relationships			
between systems or between			
components of a system. (HS-PS3-5)			
Common Core			
Common Core Writing Standa	ırds:		
WHST.9-12.9, WHST.11-12.2, V	WHST.11-12.7, WHST.11-12.8, WHST.9-1	10.10	
Common Core Reading Standards:			
RST.11-12.1			

Content Area:	Physics			Grade(s)	10, 1	1, 12
Unit Plan 5 Title:	Waves and their App	olications	Time	5Weeks		
			Frame			
Learning Objective	28					
Use mathematic	atical representations	to support a claim	regarding	relationship	s amor	ng the frequency, wavelength, and speed of waves
traveling in v	arious media. HS-PS	4-1 2				
• Evaluate the	validity and reliability	y of claims in publi	shed mat	erials of the	effects	that different frequencies of electromagnetic
radiation hav	e when absorbed by r	natter. HS-PS4-4 3				
 Distinguish b 	between models of rac	liant energy, and us	se the sca	le of the pro	blem to	o determine at what regimes a particle or wave
model is more	re appropriate. PS4.B	4				
• Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model						
or a particle model, and that for some situations one model is more useful than the other. HS-PS4-3 5						
Communicate technical information about how some technological devices use the principles of wave behavior and wave						
interactions with matter to transmit and capture information and energy HS-PS4-5						
 Evaluate questions about the advantages of using a digital transmission and storage of information. HS-PS4-2 						
Science and Engine	ering Practices	Disciplinary Core	e Ideas			Crosscutting Concepts
Asking Questions a	nd Defining	PS3.D: Energy in	Chemica	al Processes		Cause and Effect
Problems		 Solar cells are hu 	man-mac	le devices th	at	• Empirical evidence is required to differentiate

Asking questions and defining problems in grades 9–12 builds from grades K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.

• Evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design. (HSPS4-2)

Using Mathematics and Computational Thinking

Mathematical and computational thinking at the 9- 12 level builds on K-8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

• Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-PS4-1)

Engaging in Argument from

likewise capture the sun's energy and produce electrical energy. (secondary to HS-PS4-5)

PS4.A: Wave Properties

• The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1)

Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. (HS-PS4-2),(HS-PS4-5)
[From the 3–5 grade band endpoints] Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) (HS-PS4-3) PS4.B:

Electromagnetic Radiation

• Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining m any features of electromagnetic radiation, and the particle model explains other features. (HS- between cause and correlation and make claims about specific causes and effects. (HSPS4-1)

• Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. (HS-PS4-4)

Systems can be designed to cause a desired effect. (HS-PS4-5) Systems and System Models
Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales. (HS-PS4-3)

Stability and Change

• Systems can be designed for greater or lesser stability. (HS-PS4-2) Energy and Matter

• Energy cannot be created or destroyed–only moved between one place and another place, between objects and/or fields, or between systems. (HS-ESS1-2)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

• Science and engineering complement each other in the cycle known as research and development (R&D). (HS-PS4-5)

Evidence

Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and designed worlds. Arguments may also come from current scientific or historical episodes in science.

• Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-PS4-3)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, and designs.
Evaluate the validity and reliability of multiple claims that appear in scientific and technical texts or media reports, verifying the data when possible. (HS-PS4-4)

• Communicate technical information or ideas (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually,

PS4-3)

When light or longer wavelength electromagnetic radiation is absorbed in matter, it is generally converted into thermal energy (heat). Shorter wavelength electromagnetic radiation (ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living cells. (HS-PS4-4)
Photoelectric materials emit electrons when they absorb light of a high-enough frequency. (HS-PS4-5) PS4.C:

Information Technologies and Instrumentation

• Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them. (HS-PS4-5)

ESS1.A: The Universe and Its Stars

• The study of stars' light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. (HS-ESS1-2)

• The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of

Influence of Engineering, Technology, and Science on Society and the Natural World

• Modern civilization depends on major technological systems. (HS-PS4-2),(HS-PS4-5) • Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (HS-PS4-2)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

• Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. (HS-ESS1-2)

Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

• A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not

and mathematically). (HS-PS4-5)	spectra of the primordial radiation (cosmic microwave background) that still fills the	accommodate, the theory is generally modified in light of this new evidence (HS-PS4-3)		
Constructing Explanations and	universe (HS-ESS1-2)	In right of this new evidence. (113-1 34- 3)		
Designing Solution	• Other than the hydrogen and helium formed	Scientific Knowledge Assumes an Order and		
Constructing explanations and	at the time of the Big Bang, nuclear fusion	Consistency in Natural Systems		
designing solutions in 9–12 builds on	within stars produces all atomic nuclei lighter	 Scientific knowledge is based on the 		
K-8 experiences and progresses to	than and including iron, and the process	assumption that natural laws operate today as		
explanations and designs that are	releases electromagnetic energy. Heavier	they did in the past and they will continue to do		
supported by multiple and independent	elements are produced when certain massive	so in the future. (HS-ESS1-2)		
student-generated sources of evidence	stars achieve a supernova stage and explode.	• Science assumes the universe is a vast single		
consistent with scientific ideas,	(HS-ESS1-2) PS4.B	system in which basic laws are consistent.		
principles, and theories.		(HSESS1-2)		
• Construct an explanation based on	Electromagnetic Radiation			
valid and reliable evidence obtained	• Atoms of each element emit and absorb			
atudenta' even investigations, theories	characteristic frequencies of fight. These			
simulations, near raviaw) and the	presence of an element, even in microscopie			
assumption that theories and laws that	quantities (secondary to HS-ESS1-2)			
describe the natural world operate	quantities. (secondary to 115-E551-2)			
today as they did in the past and will				
continue to do so in the future. (HS-				
ESS1-2)				
Common Core				
Common Core Writing Standards: WHST.9-12.2, WHST.11-12.8				
Common Core Reading Standards:				
RST.9-10.8, RST.11-12.1, RST.11-12.7, RST.11-12.8				

III. Methods of Student Evaluation

Assessment can be divided into two general categories: formal (graded) and informal/classroom-based (both graded and ungraded). The key to effectively assessing a student's mastery of skills is to match the assessment method to the learning objective.

Formal Assessments

- Evaluation
- Class participation
- Creative assignments
- Homework and classwork assignments
- Reports and presentations
- Research methodology
- Technological applications
- Unit tests
- Various speaking and listening assignments
- Multiple choice exams
- Quizzes (announced and unannounced)
- Essays
- Formal lab reports
- Scientific journal reviews
- Projects
- Short answer and problem solving tests
- Tests and quizzes on blackboard
- Case Study analysis

Informal Assessments

- Instructor's observations of note-taking, and organization of notebooks and assignments
- Cooperative learning activities, including labs
- Creative project assignments
- Laboratory behavior
- Observing citizenship and appropriate social responses
- Instructor's observations of time management skills

Mastering of the core proficiencies of Biology shall be evaluated in accordance with the general grading policies as listed in the student handbook:

- Tests 40%
- Laboratory Reports and Projects 20%
- Quizzes 20%
- Class Participation 10%

IV. Instructional Strategies Based on Instructional Goals

- Graphs and other visuals
- Engaging in discussions
- Reading silently and aloud
- Listening and speaking activities
- Watching and responding to media
- Brainstorming
- Listening
- Mapping
- Revising and editing
- Participating in small and large groups
- Researching to make connections to texts and classroom discussions
- Collaborative projects
- Answering questions (oral and written)
- Summarizing
- Debating
- Analyzing texts, discussions, etc.
- Peer teaching
- Competing in teams/debating
- Playing games
- Creating games

- Note taking and note making
- Writing

V. Scope and Sequence

Key: I – Introduced, D-developed in Depth, R-Reinforced

SKILLS TO BE LEARNED	11	12
Understanding the relationship between science and technology.	I D,R	I D,R
Logically gather, order and interpret data through an appropriate use of	I,D,R	I D,R
measurements and tools.		·
Correctly identify and manipulate mathematical formulas.	I,D,R	I D,R
Identify, explain and use metric and SI units of measurement	D,R	D,R
Understand and use dimensions of physical quantities and relate them to the base quantities and their SI units.	I,D,R	I D,R
Describe and explain vector algebra, trigonometric ratios, simple derivatives and	I,D, R	I D,R
simple integrals.		
Demonstrate an understanding of kinematics and apply vector algebra to the	I,D,R	I D,R
solution of problems in one and two dimensions		
Demonstrate an understanding of forces and fields of force such as gravitation, and	I,D,R	I D,R
electrical and how they relate to potential and kinetic energies.		
Explain and solve problems using the conservation of linear and angular	I,D,R	I,D,R
momenta.		
Calculate and solve problems involving weight, normal force, friction, and	I,D,R	I,D,R
inclined planes.		
Understand circular motion, turning forces and rotational motion.	I,D,R	I D,R
Use the concept of centripetal force to perform calculations on objects moving in a		
circle and to explain the motion of celestial bodies.		
Describe the conditions for objects to be in static equilibrium and solve	I,D,R	I D,R
problems involving systems of macroscopic objects in equilibrium.		
Demonstrate an understanding of an object undergoing simple harmonic motion and	I,D,R	I D,R
calculate quantities such as its frequency, energy, and amplitude.		
Demonstrate an understanding of wave motion and apply these principles to	I,D,R	I,D,R
mechanical waves and sound.		

Explain and solve problems using the conservation of mechanical energy	I,D,R	I D,R
Explain the Doppler effect and perform calculations to determine the	I,D,R	I,D,R
perceived frequencies or motion of the sound emitter or the observer.		
Calculate the electric field and force at a point due to an array of electric	I,D,R	I,D,R
point charges		
Calculate the potential difference between two points due to an array of	I,D,R	I,D,R
electric point charges.		
Set up a steady state direct current circuit from a circuit diagram and analyze	I,D,R	I,D,R
the circuit using Ohms law.		
Analyze a direct current circuit consisting of voltage sources and resistors	I,D,R	I,D,R
using Kirchhoff's rules.		

VI. Pacing Chart

Marking Period 1

o Unit 1

- **Measurements and Units:** (2 weeks) Student will review SI and metric units of measurements and their prefixes. Student will be able to use and convert between common metric prefixes. Student will be able to estimate the maximum error in a measurement and propagate the error in the calculation of a related quantity. Student will be able demonstrate an understanding of errors in data collection through experimentation and the reporting of such data and results to the correct number of significant figures using decimal or scientific notation. Student will be able to perform dimensional analysis in formulas and derived units verification.
- **Kinematics in One Dimension:** (2 weeks) Student will be able to describe one dimensional motion and differentiate between vector and scalar quantities. Student will be able to understand the meaning of the following quantities; displacement, distance, speed, velocity acceleration and deceleration. Student will be able to carry out calculations of the said motion quantities stating the results in the correct metric units. Student will be able to describe motion using the common equations and when necessary derive equations needed to solve given kinematics problems. Student will

be able to analyze motion graphs and carry out calculations based on the graphs or given data. Student will be able to analyze motion along the x-axis and y-axis separately.

- **Kinematics in Two Dimension:** (3 weeks) Student will be able to define the six common trigonometric functions (sin, cos, tan, cot, sec and cosec) using a right angled triangle and convert between trigonometric functions and angles in degrees using a scientific calculator. Student will be able to use the unit circle. Student will be able to do vector algebra; addition, subtraction and multiplication of vector quantities. Student will be able describe projectile motion and solve projectile motion problems involving macroscopic objects. Students will be able to describe and solve relative motion problems.
- \circ Unit 2
 - **Dynamics: Newton's Laws of Motion:** (2 weeks) Student will be able describe force, mass and inertia and relate them to Newton's first law of motion. Student will be able differentiate between kinematics and dynamics, define the net force on an object, and calculate its consequent acceleration according to Newton's second law.

Marking Period 2

- \circ Unit 2
 - Newton's Second and Third Laws: (1 week) Student will be able to understand the concept of a force exerted on object by another object or exerted on an object due to its presence in a force field. Student will be able to identify action-reaction pairs and understand the concept of a normal force. Student will be able analyze forces on an object using free-body diagrams.
 - Friction and Motion (1 week) Student will be able to describe friction conceptually and mathematically and describe how its effect can be reduced. Student will be able to solve force and motion problems involving friction on horizontal surfaces and on inclines.
 - **Circular Motion and Gravitation:** (3 weeks) Student will be able to explain the acceleration of an object moving in a circle at constant speed. Student will be able to describe how centripetal acceleration depends upon the object's speed and the radius of the circle. Student will be able to recognize the direction of the force that causes centripetal acceleration. Student will be able to relate Kepler's laws of planetary motion to Newton's law of universal gravitation. Student will be able to calculate the periods and speeds of orbiting objects. Student will be able to describe the method Cavendish used to measure G and the results of knowing G. Student will be able to solve

problems involving orbital speed and period. Student will be able to relate weightlessness to objects in free fall. Student will be able to contrast Newton's and Einstein's views about gravitation.

0 Unit 3

• Work, Energy and Power: (2 weeks) Student will be able to describe the relationship between work and energy. Student will be able to display an ability to calculate work done by a constant or varying force. Student will be able to identify conservative and non-conservative forces. Student will be able to differentiate between kinetic and potential energy and demonstrate the ability to solve problems based on energy conservation. Student will be able to solve energy conservation problems involving dissipative forces. Student will be able differentiate between energy and power and to solve problems involving power.

0 Unit 1

• Linear Momentum and Collisions (2 weeks) Student will be able define linear momentum and impulse. Student will describe the conservation of linear momentum. Student will describe collisions and impulse. Student will be able solve problems involving the conservation of linear momentum, elastic collisions and inelastic collisions. Student will be able to solve problems involving collisions in two dimensions. Student will be able to describe the center of mass and center of gravity of single objects or a system of objects. Student will be able to calculate the coordinates of the center of mass of a system of objects.

Marking Period 3

- Unit 2
 - **Rotational Motion** (3 weeks) Student will describe the radian as a unit of angular displacement. Student will be able to define the angular quantities of acceleration, frequency, period, velocity and relate them to their linear analogues. Student will solve problems involving the kinematics of rotational motion. Student will be able describe torque and rotational inertia and solve problems involving rotational dynamics. Student will be able to describe rotational kinetic energy and relate it to the translational kinetic energy of a rolling object. Student will describe angular momentum and its conservation and solve angular momentum problems. Student will describe the vector nature of angular quantities.
 - **Static Equilibrium** (2 weeks) Student will be able to describe the conditions required for static equilibrium and solve problems involving static equilibrium. Student will be able to understand the concept of elasticity in materials and describe Hooke's law, stress, strain, and the elastic modulus. Student will be able to describe the

deformation of objects subjected to tensile, compressive, and shear stresses and define shear and bulk modulus. Student will be able to describe fracture and solve problems involving fracture.

- o Unit 5
 - Vibrations and Waves (3 weeks) Student will able to describe simple harmonic motion (SHM) using a spring mass system. Student will be able to describe energy in a simple harmonic oscillator using the said spring mass system. Student will be able to understand the sinusoidal nature of SHM and demonstrate it by comparison to uniform circular motion. Student will be able to solve problems concerning the design and operation of the simple pendulum. Student will be able to describe forced vibrations and resonance. Student will be able to describe and solve problems involving the energy, interactions and motion of mechanical waves. Student will be able to describe and motion of standing waves and solve problems involving their resonance and frequency.
 - **Sound** (1 week) Student will be able to describe the characteristics of sound and calculate its speed, frequency and wavelength. Students will be able to differentiate between sound intensity and loudness and calculate the sound level in decibels. Student will be able to describe the sources of sound and determine its frequency from standing wave diagrams.

Marking Period 4

- Unit 5
 - Sound (1 week) Student will be able to describe the interference of sound waves and calculate the beat frequency.
 Student will be able to describe the Doppler Effect and perform calculations using the associated equations.
 Student will be able to describe the applications of sound waves.
- o Unit 4
 - Electric Charge and Fields: (3 weeks) Student will be able to understand the basic properties of electric charge. Student will differentiate between conductors and insulators. Student will be able to calculate the net electric force due to an array of electric point charges using Coulomb's law. Student will be able to describe electric fields and calculate the electric field at a point due to an array of electric point charges. Student will be able to compare electric force with gravitational force.
 - **Electric Potential**: (2 weeks) Student will be able to differentiate between electric potential energy, electrical potential and potential difference. Student will be able to understand the relationship between electric potential and

electric field. Student will be able to calculate the potential difference between two points due to an array of electric point charges.

• Electric Current and Resistors: (2 weeks) Student will be able identify sources of electric current such as electric battery and describe their operation. Student will be able to define the electric current as a flow of charge. Student will be able to describe Ohm's law and understand the color coding of resistors. Student will be able to analyze direct current (dc), steady state circuits consisting of voltage sources, resistors and switches. Student will be able to calculate voltage and current in the dc circuits. Student will be able to understand resistivity and calculate the resistivity of materials. Student will be able to calculate electric energy and power.

VII. Proficiencies

- 1. Logically gather order and interpret data through an appropriate use of measurements and tools.
- 2. Students will evaluate the importance of curiosity, honesty, openness, and skepticism in science. Students will use standard safety practices for all classroom laboratory and field investigations. Students will identify and investigate problems scientifically.
- 3. Students will use tools and instruments for observing, measuring, and manipulating scientific equipment and materials.
- 4. Students will demonstrate the computation and estimation skills necessary for analyzing data and developing reasonable scientific explanations.
- 5. Students will communicate scientific investigations and information clearly.
- 6. Students will analyze how scientific knowledge is developed.
- 7. Students will understand important features of the process of scientific inquiry.
- 8. Demonstrate an understanding of the nature, types and causes of motion.
- 9. Demonstrate an understanding of the nature of gravitational, electromagnetic and nuclear forces.
- 10. Explain the law of conservation of energy and relate it to energy transformations.
- 11. Demonstrate an understanding of the characteristics of work and energy.
- 12. Describe and identify the components of the electromagnetic spectrum
- 13. Students will analyze the relationships between force, mass, gravity, and the motion of objects. Students will evaluate the significance of energy in understanding the structure of matter and the universe.
- 14. Students will evaluate the forms and transformations of energy.
- 15. Students will analyze the properties and applications of waves.
- 16. Students will analyze dc electric circuits containing resistors.
- 17. Students will analyze the properties of electric fields.

18. Examine contributions of important scientists to the development of physics principles.