

How Things Work

Louis Bloomfield University of Virginia

What is *How Things Work*?

- Teaching physics in the context of objects
 - Objects ahead of physics concepts
 - Physics concepts ahead of formulas and calculations
- A backward course in physics

Relationship to Core Knowledge

- Physics knowledge lies in the <u>concepts</u>
 - Words, formulas, calculations are secondary
 - Physics lives in the <u>how</u> and <u>why</u>
 - Physics does not live in the what, who, where, when
 - There is no physics in:
 - stringing together buzzwords or memorizing facts
 - the formal "scientific method"
 - following formulaic recipes or mindless "potted" experiments
 - Physics is in observing, thinking, understanding

Overview

- Motivation for *How Things Work* (*HTW*)
- Structure of *HTW*
- History of *HTW*
- Examples of objects
 - Roller Coasters
 - Bicycles
 - Microwave Ovens
- Observations about *HTW*

Motivation for HTW

- Difficulties with teaching physics
 - Only one intro course: *Physics-for-Physicists (PfP)*
 - To non-scientists, *PfP* is
 - Academic
 - Unfamiliar
 - Irrelevant
 - Boring
 - Frightening
 - Neglects how science developed in context of objects
 - Active learning, hands-on work, enthusiasm can't fix

Motivation (con't)

- Difficulties facing UVa Physics Dept in 1991
 - Too few students
 - No growth in major, graduate, or service courses
 - Limited appeal for the one non-scientist course (*PfP*!)
 - Non-scientists feared physics
- Personal motivations
 - To teach students with broader interests
 - To return to what attracted me to physics

Structure of HTW

• A hierarchy with three levels

- Level 1: Areas of Physics for the instructor
- Level 2: Objects of Everyday Life for the students
- Level 3: Concepts of Physics for both

Chapter 7. Resonance and Mechanical Waves

7.1 Clocks

(time and space, natural resonance, harmonic oscillators, simple harmonic motion, frequency)

7.2 Violins and Pipe Organs

(sound, music, vibrations of a string and column of air, higher-order modes, harmonics, sympathetic vibration)

7.3 The Sea and Surfing

(tidal forces, tidal resonances, standing waves, traveling waves, wavelength, wave velocity)

History of HTW

- Design and start-up (1991-1992)
 - Custom fit the course to non-scientists
 - Focus on concepts, not formulas
 - Build course around everyday objects
 - Goals: students should
 - learn physics concepts well
 - learn to see physics in their world
 - encounter physics in context
 - begin to feel that physics is important
 - learn how things around them work

Expected fall enrollment 20-25, actual enrollment: 92

History (con't)

- Growth and development (1992-1996)
 - Rearrangement and reduction of material
 - Enrollment grew to between 350 and 500 per semester
 - Lecture notes evolved into a book
- Further development (1996-present)
 - Further reduction of material to avoid a frantic pace
 - Working to stay "on message"
 - Getting students involved

Roller Coasters

- How do loop-the-loops work?
- Physics concepts involved:
 - Inertia
 - Acceleration and forces
 - Centripetal accelerations
 - Weight and "weightlessness"

Bicycles

- Why are bicycles so stable?
- Physics concepts involved:
 - Equilibrium
 - Energy and acceleration
 - Stable and unstable equilibriums
 - Static stability
 - Gyroscopic precession
 - Dynamic stability

Clocks

- How do clocks keep time?
- Physics concepts involved:
 - Time and Space
 - Forces and Acceleration
 - Harmonic Oscillators

Microwave Ovens

- How do microwave ovens cook?
- Physics concepts involved:
 - Electric fields
 - Polar molecules and free charges
 - Electrostatic forces and torques
 - Electromagnetic waves
 - Wavelength and frequency

Observations about HTW

- Impact of *How Things Work* at UVa
 - Many non-scientists now learn physics
 - These students find physics useful
 - Much less fear of physics a cultural change
 - Physics is now a valued part of the University
 - Other physics courses are flourishing

Observations (con't)

- My experiences
 - I'm enjoying teaching more than ever
 - I feel as though I make a difference
 - I'm visible to the students and the University
 - I often explain of physics to individuals and the media
 - I've learned a great deal of basic physics