Do you understand the difference between velocity and acceleration? In each situation, state whether it 1. 1, or remains constant.

II.

III.

What must I do FIRST when using a physics eqn?

Sample Data:

<u>v(m/s)</u>
0 misis
1/
$\frac{1}{3}$ $> 2 m/s/s$
6) 3 m/s/s
v(m/s)
0 \ Sm/52
5 <i>-</i> -
9> 4m/st
$\frac{9}{12} > 3 m/s^2$
v(m/s)
0> 2 m/52
25
4> 7 mist
6> 7 m/s2

- Rearrange the eqn to solve for the one unknown
- DO NOT PLUG #'S IN FIRST!
- This allows you to calculate in one step and eliminates over-rounding.
- · This also lowers your chances of making errors. Practice:

1.
$$F = ma$$
 (solve for "a")
$$a = \frac{F}{m}$$

$$2. v = \frac{\Delta x}{t} \text{ (solve for "t")} \quad t \cdot V = \frac{\Delta x}{t} + \frac{t \cdot y}{v} = \frac{\Delta x}{v}$$

- What are some common phrases used in physics problems?
- What are the steps required to solve physics problems?

Vf is not mentioned so use the egn that the doesn't have Vf in it: OX=Vit+ +at

Vf2=V12+2aax

- How fast was it going? \Longrightarrow means $V_1' = ?$
- How fast will it go? \Longrightarrow means $V_{\mathcal{E}} = ?$ Object starts at rest \Longrightarrow means $V_1 = b m/s$
- Object slows down ==> means a 15 negative
- Object comes to a stop \Longrightarrow means $\frac{\sqrt{1 + Om/5}}{2}$
- Object moves at a constant velocity $\Longrightarrow \underline{a = 0 \, m/s^2}$
- Step 1: Draw a pic and lor graph Step & List variables/given information
- Step 3: Do algebra to solve for the unknown (if anything equals 0, eliminate from the eqn before doing the algebra)
- Step #: Plug #'s in (be consistent with units and be sure they cancel to give the appropriate unit!!) Practice:
 - 1. Starting from rest, a ball rolls down a hill, uniformly accelerating at 3.2 m/s2. How long does it take the ball to roll 24 meters?

$$\frac{\Delta x = VX + \frac{1}{2}at^{2}}{\frac{1}{2}a} = \frac{1}{3.87}$$

$$\frac{\Delta x = VX + \frac{1}{2}at^{2}}{\frac{1}{2}a} = \frac{1}{3.87}$$

$$\frac{\Delta x = VX + \frac{1}{2}at^{2}}{\frac{1}{2}a} = \frac{1}{3.87}$$

2. Skid marks at the scene of an accident show that Justin Time's car moved 64 m before it stopped. If the car decelerated at a rate of 8.0 m/s², how fast was Justin driving before he applied the brakes?

$$\frac{1}{\sqrt{1 + 104m}} = 0 \sqrt{1 + 2aax}$$

$$\frac{1}{\sqrt{1 + 2aax}} = 0 \sqrt{1 + 2aax}$$

SKIPPER MOSE

More on your own:

- 1. $KE = 0.5 \text{mv}^2$ (solve for "m")
- 2. solve #1 for v
- 3. $V_f^2 = v_i^2 + 2a\Delta x$ (solve for " Δx ") 4. solve # 3 for v_i
- How do I know what symbol I am solving for?
- "How far?" means solve for "How fast" means solve for
- "How long?" means solve for Uniform Motion Review Problem: Anita Break and Earl E. Byrd drive 48 km east. Anita drives at a constant 88 km/hr while Earl drives at a constant 92 km/h. How long will Earl have to wait on Anita at their destination?

What are the kinematic eqns for uniformly accelerated motion? (Write these in your gems of wisdom)

Th	at "Ve
21	a **
	Firelyity

Acceleration Eqn	Missing variable
$\mathbf{v}_i = \mathbf{v}_i + \mathbf{at}$	Δ ×
$\Delta x = v_i t + \frac{1}{2} a t^2$	\sqrt{f}
$\Delta x = v_x t - \frac{1}{2}at^2$	Vi
$\mathbf{v_f}^2 = \mathbf{v_i}^2 + 2\mathbf{a}\Delta\mathbf{x}$	t
$\Delta x = \frac{1}{2} (v_f + v_i)t$	ā

- *There are 5 possible variables: Δx , vi, vf, a, t
- *A typical problem won't mention one of these
- *Find this "missing variable" in the table to determine the eqn you will use.
- *Note: We will assume direction of motion is always positive unless otherwise stated.

P.69 (in text) # 26

* Solve it 2 ways:

① use algebra
② use a v-t graph

Algebra Method

Charges direction
at the top of the
at the top of the
ramp => Vf = 0 mls
ramp => Vf = 1.75mls

\$\frac{1}{2} = -.2mls^2

t=?
This problem did not mention ax:

$$V_1 = V_1 + at$$
 $0 = V_1 + at$
 $-V_1 = at$
 $t = -\frac{V_1}{a}$
 $t = -\frac{1.75 \text{ m/s}^2}{-1.2 \text{ m/s}^2}$

You should get the same answer same answer both ways both ways both ways 1.75 to 5lope. ~ 2m/s² 1.75 to 5lope. ~ t(s)

We know rise & slope. We we had to solve for "run".

That will be the time.

slope - rise

Algebra
Method
$$\overrightarrow{Ax} = \pm (V_1 + V_1)^{\dagger} t$$

$$\overrightarrow{Ax} = \pm \left(22\frac{m}{3} + 44\frac{m}{3}\right)(115)$$

$$\overrightarrow{Ax} = +363 \text{ m}$$

