Name:		
Date Due:		

Simple Machines

Physical Science Chapter 4

Work & Power

1.	Define t	the following terms:
	a.	work=
	b.	ioule=
	U.	joule=
	c.	power=
	-1	
	d.	watt=
	e.	horsepower=
2.	When	does a force do work?
	-	
3.	If there	e is no movement, has work been done?
4.	Describ	be the conditions of force and motion that results in the maximum work done
5.	What is	s the equation for work?
6.	What is	s the amount of work done when a 1 N force moves an object 1 meter?
7.	How m	such work is done when a 10.0 N force moves an object 2.5 meters?
8.	What is	s the equation for power?
0	Цом с	ra work and nower related?
9.	now at	re work and power related?

10.	How much work does a 100 watt light bulb do when it is lit for 30 seconds?
11.	How much power is used when 100 J of work is done in 10 seconds?
12.	You lift a book from the floor to a bookshelf 1.0 m above the ground. How much power is used
	if the upward force is 15.0 N and you do the work in 2.0 s?
13	How did James Watt define the horsepower?
13.	Tiow and surines water define the horsepower.
14.	You carry two heavy bags of groceries upstairs to your kitchen. Will you do more work on the
	bags if you carry them up one at a time? Explain.
15.	A desk exerts an upward force to support a computer resting on it. Does this force do work?
	Explain
1.5	
16.	Two cars have the same weight, but one of the cars has an engine that provides twice the power
	of the other. Which car can make it to the top of the mountain pass first? Which car does more
	work to reach the pass?

Machines

17.	Define t	he following terms:
	a.	machine=
	b.	output distance=
	c.	input distance =
	d.	output force=
	e.	input force=
	f.	work output=
	١.	work output
	g.	work input=
	_	
	h.	actual mechanical advantage=
	i.	ideal mechanical advantage=
		<u> </u>
	j.	efficiency=
	٦.	emetrey-
18.	How ca	n using a machine make a task easier to perform?
19.	How is	a machine able to increase a force?
13.	11011	a maxime asie to morease a forse.
20.	Conside	er the equation: Work = Force x Distance. Is the force required to do a given amount of
	work in	creased or decreased if a machine increases the distance over which a force is exerted?

21.	Besides changing the amount of force and the distance, what else does a machine do?
22.	Why is the work done by a machine always less than the work done on a machine?
23.	What is the equation for work input?
24.	What is the equation for work output?
25.	How is work input and work output related for a machine?
26.	How can you increase the work output of a machine?
27.	A machine produces a larger force than you exert to operate the machine. How does the input distance of the machine compare to its output distance?
28.	You do 200 J of work pulling the oars of a rowboat. What can you say about the amount of work the oars do to move the boat? Explain.
29.	How does the output distance the end of a baseball bat move when it is swung compare with the input distance you move your hands through?
30.	How does the actual mechanical advantage of a machine compare to its ideal mechanical advantage?

Simple Machines

31. Define the following terms:			
a.	lever=		
b.	fulcrum=		
c.	input arm=		
			•
d.	output arm=		
e.	first class lever=		•
-			
f.	second class lever=		
g.	third class lever=		•
δ.	till d class level –		
h.	wheel and axle=		-
i.	incline plane=		•
1.	incline plane-		
j.	wedge=		
I.			-
k.	screw=		
l.	pulley=		
	<u> </u>		
m.	fixed pulley=		
n.	moveable pulley=		
0.	pulley system=		
			•
32. List the	e six types of simple machines.		
a.		d	_
			=
b.		e	•
c.		f	 _
		_	•

33.	Draw an example of each of the six simple machines.
34.	What defines a first-class lever?
34.	What defines a first-class lever?
	What defines a first-class lever?
35.	What defines a second-class lever?
35.	What defines a second-class lever?

Name:_	
38.	What is the ideal mechanical advantage of a ramp if its length is 4.0 m and its higher end is 0.5 m above its lower end?
39.	If you want to pry the lid off a paint can, will it require less force to use a long screwdriver or a short screwdriver? Explain.
	Shoreson ewarmer: Explaini
40.	What is the equation for efficiency?
41.	What happens to the efficiency of a machine if you reduce the friction?
42.	A construction worker moves a crowbar through a distance of 0.50 m to lift a load 0.05 m off of
	the ground. What is the IMA of the crowbar?
43.	The IMA of a simple machine is 2.5. If the output distance of the machine is 1.0 m, what is the input distance?
	mput distance.
44.	Why is the actual mechanical advantage of a machine always less than its ideal mechanical advantage?
	moonamour un vununge.
45.	Why can no machine be 100% efficient?
46.	What is the efficiency of a machine with a work output of 120 J and a work input of 500 J?

Name:	
47.	. You test a machine and find that it exerts a force of 5 N for each 1 N of force you exert operating
	the machine. What is the actual mechanical advantage of the machine?
48.	. How can two machines appear identical and yet not have the same actual mechanical
	advantage?
49.	Suppose you are an inventor in 1900. You are constructing a bicycle of your own design. What
	could you do to ensure your bicycle efficiently changes the work input into forward motion?
50.	. When is the ideal mechanical advantage of a machine greater than 1?
51.	. You have just designed a machine that uses 1000 J of work from a motor for every 800 J of
	useful work the machine supplies. What is the efficiency of your machine?
52.	. If a machine has an efficiency of 40%, and you do 1000 J of work on the machine, what will be
	the work output of the machine?

Name:	
53	. You are going to calculate the ideal mechanical advantage for the following examples using the
	equations below.
	Incline Plane = Distance along Incline/Change in Height
	Wedge = Length of Wedge / Width of Wedge
	Screw = More threads has greater IMA
	Lever = Input Arm/Output Arm
	Wheel & Axel = Diameter of the Wheel / Diameter of the Axel
	Pulley = Number of Supporting Load Ropes
a)	You have a lever with an input arm of 12cm and an output arm of 2cm. What is the IMA?
b)	You have a 1m wheel with an axel of 10cm. What is the IMA?
c)	The ramp at school is 250cm long with a height of 25cm. What is the IMA?
d)	A fixed pulley has one supporting arm. What is the IMA?
e)	A block and tackle pulley system has five supporting ropes. What is the IMA?

Name:	
f)	You are trying to pry a lip of a can with a screw driver. The input arm is 9cm and the output arm is 1cm. What is the IMA?
g)	You are cutting some food with a knife with a thickness of 1mm and height of 5cm. What is the IMA?
h)	You have to choose between a screw with 50 threads and a screw with 25 threads. Which one has greater IMA?
i)	The tire on your car has a radius of 50cm and an axel radius of 5cm. What is the IMA?
j)	The stairs in the hall are 10m high and 100m long. What is the IMA?

Compound Machines

г <i>а</i>	Define the faller sing towns.	
54.	Define the following terms:	
	a. compound machine=	
55.	How do compound machines make work easier than simple machines?	
56.	How is the work done by a machine compare to the work put into it?	
57	Give an example of a compound machine and describe the simple machine in it?	
57.	olve an example of a compound machine and describe the simple machine in it:	
58.	Explain why the efficiency of compound machines is generally less than the efficiency of simple	e
	machines	
	machines	