AP STATISTICS	NAME	
PART II TEST REVIEW	DATE	_PER

For each statement below, explain why the statement <u>cannot</u> be true:

- 1) The correlation between hair color and GPA is -0.25.
- 2) The correlation between height and weight is 0.73 inches per pound.
- 3) Scientists have found a high correlation (r = 1.43) between lipid concentration in a blood sample and age of the blood sample taken.

Match each pair of variables to its most likely value of r.

4)	Height and armspan in adult males	 a	-0.92
5)	SAT score and height in inches of 16-year olds	 ы. Ь	.0.02
6)	Number of hours a person has been up past their normal bedtime &	 D.	+0.93
	number of minutes it takes the person to do a crossword puzzle	c.	+0.71
7)	Temperature outside and the number of minutes it takes an ice cube to melt on the sidewalk	 d.	Close to 0
		e.	-1.00
8)	The amount of time a person spends sleeping and amount of time awake in a 24-hour period.		

- 9) The correlation (r) between speed and gas mileage of a vehicle is close to zero, even though speed and gas mileage are definitely related. Explain how that is possible.
- 10) A couple of years ago a local newspaper published research results claiming a positive association between the number of years high school children had taken instrumental music lessons and their performances in school (as measured by GPA).
 - a. What does "positive association" mean in this context?
 - b. A group of parents then went to the School Board demanding more funding for music programs as a "for sure" way to improve student chances for academic success in high school. As a statistician, do you agree or disagree with their reasoning? Explain.

11) Researchers examining life in the Alps recorded the boiling point of water at a variety of air pressures and created the following linear regression.

		•		
	Standard			
	Coefficients	Error	t Stat	P-value
Intercept	155.2965	0.927337	167.465	5.85E-26
Pressure (inches Hg)	1.901784	0.036756	51.74075	2.53E-18

R-sq = 99.4% S = 0.44

a) Write the equation of the least squares regression line.Be sure to define your variables.

- b) Interpret the slope of the line.
- c) Interpret the intercept of the line.
- d) Find and interpret the correlation coefficient.
- e) Interpret R².
- f) Interpret S.
- g) Use your model to predict the boiling point of water when the air pressure is 25 inches Hg.
- 12) If the point in the upper left corner of the scatterplot is removed, what will happen to the correlation (r) and the slope of the line of best fit (b)?
 - a. They will not change.
 - b. Both will increase.
 - c. Both will decrease.
 - d. *r* will increase and *b* will decrease.
 - e. *r* will decrease and *b* will increase.

14) A manufacturer creates a linear regression model of production (y) v. hours worked (x) for its workers. If a worker has a negative residual, what does that mean?

- 15) The residual plot for a linear model is shown. Which is true?
 - a. The linear model is okay because approximately the same number of points are above the line as below it.
 - b. The linear model is okay because the association between the two variables is fairly strong.
 - c. The linear model is no good because the correlation is near 0
 - d. The linear model is no good because some residuals are large.
 - e. The linear model is no good because of the curve in the residuals.
- 16) It's easy to measure the circumference of a tree's trunk, but not so easy to measure its height. Foresters developed a model for ponderosa pines that they use to predict the tree's height (in feet) from the circumference of its trunk (in inches): $\ln \hat{h} = -1.2 + 1.4(\ln C)$. A lumberjack finds a tree with a circumference of 60"; how tall does this model estimate the tree to be?
- 17) Choose the right word to fill in the blanks:
 - a) If a model is ______ (linear/exponential), the same value is *added* to y each time x is increased by one unit.
 - b) If a model is ______(linear/exponential) y is *multiplied* by the same value each time x is increased by one unit.
- 18) Students in a physics class are studying free-fall to determine the relationship between the distance an object has fallen and the amount of time since release. They record data from an experiment in which a rock is dropped from a platform. A scatterplot of distance (y) vs. time (x) showed that the data was not linear, so the students used the re-expression $\sqrt{\text{distance v}}$. time. Examine the regression output and residuals below.

Standard					
	Coefficients	Error	t Stat	P-value	
Intercept	0.111436	0.114482	0.973393	0.344006	
Time (sec)	22.01768	0.203536	108.1758	1.43E-25	
S = 0.19	9	R-sq = 9	9.8%		

a) Does this model appear to be a good fit? Explain.

- b) Write the equation of the least squares regression line. Be sure to define your variables.
- c) Use the equation to predict the distance fallen after 2 seconds.
- d) Even though this model was a good fit, you should not be too confident in your prediction for part (c). Explain why not.

