

Parachutes

◆An experience in inquiry learning

♦ What type of parachute would you like attached to your back?

Workshop Strands

- Understanding by Design
- Supporting Inquiry
 - How can I facilitate and assess inquiry investigations in a K-8 classroom and achieve a standards-based curriculum?
 - How can I plan an inquiry to ensure that students demonstrate critical learning of content and process skills?
- Literature Inquiry
- Next Steps & Collaboration

Agenda

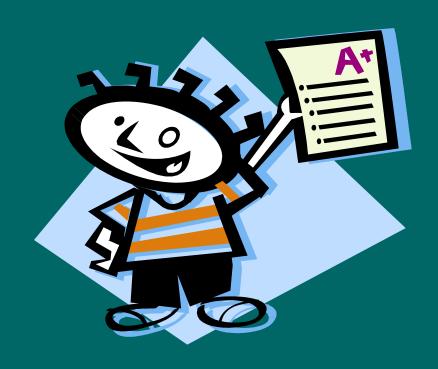
- Inquiry Investigation (integrate break) approx 2.5 hours
 - Phase 1
 - Phase 2
 - Lunch @ 12:00 1:00
 - Phase 3
- Debrief and share strategies to support inquiry in the classroom @ 1:45
- Share Inquiry Template

Purpose

Provide a quick, intensive experience of **inquiry** to create a

feel for inquiry and

Vision of the process.


Parachute Inquiry

- Based on the Exploratorium's work
 - Model structure of inquiry (see map)
- ◆Focused on middle school but could be modified for elementary

This experience includes

- Science content associated with parachutes.
- Use of process skills to learn content.
- Process of doing inquiry.

Become the learner.

Mess around and explore

Inquiry Structure for Learning Science Content

Inquiry Starters

Learners explore materials, make observations, and raise questions related to content goals.

Focused Investigation

Learners plan and carry out investigations based on their questions.

Sharing Understanding

Learners share investigation results with each other to further their understanding of scientific concepts.

Inquiry Starters – Phase 1

- The inquiry experience is introduced.
- Explore engaging materials and phenomena.
- Raise and record questions.

Inquiry Starter

- Build parachute according to the directions
- Explore how your parachute works
- Record observations (front) and questions (back) you have on index cards

Types of Questions

◆Investigable (testable)

◆Non-investigable questions

What is the difference?

Sort your index cards & discuss

Investigable <u>or</u> Non-investigable?

Will a round parachute work better than a square parachute?

How do you steer a parachute?

Variable Scan

Dependent Variables

Variable Scan

- ♦ ½ room "What effects heart rate"
- 1/2 room "What effects the speed of the car?"

- Your task:
- Brainstorm possible independent variables
- dependent variables
- Variables that are kept constant

Variable Scan

- ♦½ room plant experiment
- ♦½ room paper towel testing

Your task:

- Brainstorm possible variables that you could change (Independent variable)
- Variables that you could measure/observe (dependent variables)
- Variables that are kept constant for a fair test

Question Format

◆Does not always work – sometimes more "lose" questions are more valuable

Fair Test / Controlled Experiment

What is a fair test?

How do you get your students to understand what a fair test is?

Gallery Walk

- Post about 6 questions on wall
- Read questions
- Form groups of approximately 3
- Use planning template

Inquiry Structure for Learning Science Content

Inquiry Starters

Learners explore materials, make observations, and raise questions related to content goals.

Focused Investigation

Learners plan and carry out investigations based on their questions.

Sharing Understanding

Learners share investigation results with each other to further their understanding of scientific concepts.

◆Investigate – Phase

- > Figure something out
- > Receive help from facilitators
- Share information with other groups
- > Raise new questions
- > Revise your plan

Inquiry Structure for Learning Science Content

Inquiry Starters

Learners explore materials, make observations, and raise questions related to content goals.

Focused Investigation

Learners plan and carry out investigations based on their questions.

Sharing Understanding

Learners share investigation results with each other to further their understanding of scientific concepts.

Sharing Understanding — Phase 3

- Process for meaning
- Share results of investigations
- Facilitator synthesizes these results
- ♦2-3 minutes
- ◆Template as a guide
- Chart paper & markers available

Parachute Synthesis

We learned...

Different forces were influencing motion.

- ◆Air exists as a substance and can act against objects (can exert a force).
- ◆The force of air against objects is called air resistance or drag.
- The force acting on a parachute are gravity pulling down and drag pulling it up.
- The greater the surface area of an object the greater the drag.
- **♦**MORE...

Different materials and/or designs have benefits / drawbacks such as:

- Groups found that flexible materials make better parachutes because they unfold into a parachute shape easily.
- Groups found that larger parachutes work better than smaller parachutes because they catch more air, as long as they are not too heavy.
- **◆**MORE...

If emphasized...

Calculate the average speed of a moving object.

Inquiry Skills

- Investigable (testable) questions can be answered in the here and now. Non-investigable questions need to be answered using print resources.
- ◆ To help ensure reliable data, the experimental design should have only one independent variable, the rest of the variables should be held constant. (controlled experiment / fair test)
- Rich inquiry investigations lead to more questions.
- MORE..

Inquiry Structure for Learning Science Content

Inquiry Starters

Learners explore materials, make observations, and raise questions related to content goals.

Focused Investigation

Learners plan and carry out investigations based on their questions.

Sharing Understanding

Learners share investigation results with each other to further their understanding of scientific concepts.

Chart Talk

- ◆Identify strategies that help support these critical elements of inquiry
- Debrief

Inquiry Template

- Common structure to communicate grade level inquires to teachers
- Structure to design new inquiries
- 3 phases
- Apply to unit of choice on Saturday.

Exploratorium's work is focused on professional development

Essential Questions for the Pathway

Supporting Inquiry

- How can I facilitate and assess inquiry investigations in a K-8 classroom and achieve a standards-based curriculum?
- How can I plan an inquiry to ensure that students demonstrate critical learning of content and process skills?

Turn and Talk

◆Are there any topics that don't lend them selves to a hands-on inquiry?

