Answer Key

Oxidation Numbers Worksheet

Directions: Use the *Rules for Assigning Oxidation Numbers* to determine the oxidation number assigned to each element in each of the given chemical formulas.

	Formula	Element and Oxidation Number					
1.	Cl ₂	CI	0				
2.	Cl	CI	-1				
3.	Na	Na	0				
4.	Na ⁺	Na	+1				
5.	O ₂	0	0				
6.	N ₂	N	0				
7.	Al ⁺³	Al	+3				
8.	H ₂ O	Н	+1	0	-2		
9.	NO ₃	N	+5	0	-2		
10.	NO ₂	N	+4	0	-2		
11.	Cr ₂ O ₇ ²⁻	Cr	+6	0	-2		
12.	KCI	K	+1	Cl	-1		
13.	NH ₃	N	-3	Н	+1		
14.	CaH ₂	Ca	+2	Н	-1		
15.	SO ₄ ²⁻	S	+6	0	-2		

	Formula		lement	and (Oxidation	n Nun	nber
16.	Na ₂ O ₂	Na	+1	0	-1		
17.	SiO ₂	Si	44	0	-2		
18.	CaCl ₂	Ca	+2	CI	-1		
19.	PO ₄ ³⁻	Р	+5	0	-2		
20.	MnO ₂	Mn	+4	0	-2	14	
21.	FeO	Fe	+2	0	-2		
22.	Fe ₂ O ₃	Fe	+3	0	-2		
23.	H ₂ O ₂	Н	+1	0	-1		
24.	CaO	Ca	+2	0	-2		
25.	H ₂ S	Н	+1	S	-2		
26.	H ₂ SO ₄	Н	14	S	+ 6	0	-2
27.	NH ₄ Cl	N	-3	Н	+1	CI	-1
28.	K ₃ PO ₄	К	401	Р	+5	0	-2
29.	HNO ₃	Н	+1	N	+5	0	-2
30.	KNO ₂	K	+1	N	+3	0	-2

Rules for Assigning Oxidation Numbers

- 1. The oxidation number of any uncombined element is 0.
- 2. The oxidation number of a monatomic ion equals the charge on the ion.
- 3. The more-electronegative element in a binary compound is assigned the number equal to the charge it would have if it were an ion.
- 4. The oxidation number of fluorine in a compound is always -1.
- 5. Oxygen has an oxidation number of -2 unless it is combined with F (when it is +2), or it is in a peroxide (such as H₂O₂ or Na₂O₂), when it is -1.
- 6. The oxidation state of hydrogen in most of its compounds is +1 unless it is combined with a metal, in which case it is -1.
- 7. In compounds, the elements of groups 1 and 2 as well as aluminum have oxidation numbers of +1, +2, and +3 respectively.
- 8. The sum of the oxidation numbers of all atoms in a neutrals compound is 0.
- 9. The sum of the oxidation numbers of all atoms in a polyatomic ion equals the charge of the ion.

1. Give the oxidation numbers of all the elements in the following molecules and ions:

2. Determine the oxidation number of the sulfur atom:

a.
$$H_2S$$
 b. S c. H_2SO_4 d. S^2 e. HS f. SO_2 g. SO_3

3. Indicate the oxidation number of phosphorus in each of the following compounds:

4. Give oxidation numbers for the underlined atoms in these molecules and ions:

d.
$$\underline{SnF_2} + \underline{2}$$

CHEMISTRY: A Study of Matter
© 2004, GPB
14.4

