What transformations can be used to map the figure onto itself? Why can some figures be mapped onto themselves?

SOLUTION

1. b. What transformations map the figure onto itself?

How many lines of symmetry does a regular hexagon have?

For what angles of rotation does the figure map onto itself?

A. an equilateral triangle

Rotate the figure in the tool to the right by dragging the slider.

SOLUTION

For what angles of rotation does the figure map onto itself?

B. a parallelogram

Rotate the figure in the tool to the right by dragging the slider.

SOLUTION

Try It!

3. a. What are the rotational symmetries for the figure? Does the figure have point symmetry?

Try It!

3. b. What are the rotational symmetries for the figure? Does the figure have point symmetry?

What type(s) of symmetry does the figure have?

SOLUTION

What type(s) of symmetry does the figure have?

SOLUTION

Rotational Symmetry

4. What symmetries does a square have?

360:4

90° 180° 270° 340°

Symmetry

Reflectional Symmetry

WORDS

- A figure that maps onto itself when it is reflected over a line has reflectional symmetry.
- A line of symmetry is a line of reflection when a figure is reflected onto itself.

Rotational Symmetry

- A figure that maps onto itself when it is rotated about its center by an angle measuring less than 360° has rotational symmetry.
- A figure with 180° rotational symmetry has point symmetry.

DIAGRAM

