Unit 6: Cellular Energy

Learning Goal

 Explain how photosynthetic organisms use the process of photosynthesis and respiration

I. Photosynthesis Overview

 Plant, algae, and some bacteria use the products of photosynthesis to create complex carbohydrates

• Examples: starch and cellulose

I. Photosynthesis Overview

Happens in the Chloroplast
There are 2 Steps
Light dependent

Light independent (AKA the Calvin Cycle)

II. The Chloroplast

The Chloroplast is made of 2 parts
 Thylakoids
 Home of the light dependent reactions
 Contain the pigment chlorophyll
 Stroma Home of the light-independent reactions

III. Light Dependent Reactions

Light hits the chlorophyll
Chlorophyll splits a water molecule
Electrons are sent down an electron transport chain
Electrons lose energy

 Electrons are reenergized when light hits more chlorophyll

III. Light Dependent Reactions

ODuring the light dependent process ATP and NADH are produced to take energy from the light dependent reactions to the light-independent reactions

IV. Light-Independent Reactions

- Also known as the Calvin Cycle and Carbon fixation reactions
- •Happens in the stroma
- Uses ATP from the light dependent reactions for energy
- Carbon Dioxide and NADPH are used to make glucose (C₆H₁₂O₆)

Learning Goal

 Identify the cellular sites and follow through the major pathways of anaerobic respiration and account for how aerobic respiration produces more ATP per monosaccharide

V. Cellular Respiration Overview

OCellular respiration is the process of breaking down food molecules to release energy

• Two types of respiration

- Aerobic respiration occurs in the presence of oxygen
- O Anaerobic respiration occurs without oxygen

OHas 3 steps

- Glycolysis
- Krebs Cycle

• Electron Transport Chain (ETC)

• All reactions occur with the help of enzymes

@1999 Addison Wesley Longman, Inc.

• Glycolysis

- Occurs in the cytoplasm
- Can occur with or without oxygen
- Breaks one molecule of glucose in half
- **O**Produces ATP
- O Converts NAD+ into NADH

•NADH will be used later to make more ATP

OCitric Acid Cycle

- AKA Krebs Cycle
- Happens in the mitochondria
- The 3 carbon sugars along with OXYGEN enter the mitochondria and are converted into citric acid
- ATP, GTP, and NADH are produced

OETC

- NADH is converted into NAD+
- The H+ released from NADH are used to convert ADP into ATP
- In the end, 1 glucose molecule produced
 36 ATP and 6 water molecules

Occurs without oxygen
Also known as fermentation
Happens in the cytoplasm after glycolysis if oxygen is NOT present

• 2 types

- 1) alcoholic fermentation
 - Yeast and some bacteria
 - •Yeast produces ethanol
 - CO₂ is produces causing small holes in bread dough
 - Alcoholic fermentation is also used to produce wine, beer, liquor

• 2) Lactic Acid

- •Occurs in animal cells
- Usually happens when organisms engage in strenuous exercise
- •The organisms is using its oxygen supply faster than the blood can transport oxygen
- •Cells start to produce lactic acid to get energy
- •Causes muscle soreness

VIII. Comparing Aerobic and Anaerobic Respiration

	Aerobic	Anaerobic
Glycolysis	Yes	Yes
Cytoplasm	Yes	Yes
Mitochondria	No	No
ATP Production	36	2

Leaning Goal

•Compare and contrast photosynthesis and cellular respiration

IX. Comparing Cellular Respiration and Photosynthesis

	Photosynthesis	Cellular Respiration
Function	Store energy	Release energy
Location	Chloroplast	Mitochondria
Reactants	CO2 & H2O	C6H12O6 & O2
Products	C6H12O6 & O2	CO2 & H2O
Equation	CO2 & H2O → C6H12O6 & O2	C6H12O6 & O2 → CO2 & H2O
Plants	Yes	Yes
Animals	Yes	Yes