

Copyright © Cengage Learning. All rights reserved.

What You Should Learn

- Write equations of hyperbolas in standard form.
- Find asymptotes of and graph hyperbolas.
- Use properties of hyperbolas to solve real-life problems.
- Classify conics from their general equations.

The definition of a **hyperbola** is similar to that of an ellipse. The difference is that for an ellipse, the *sum* of the distances between the foci and a point on the ellipse is constant; whereas for a hyperbola, the *difference* of the distances between the foci and a point on the hyperbola is constant.

Definition of a Hyperbola

A hyperbola is the set of all points (x, y) in a plane, the difference of whose distances from two distinct fixed points, the **foci**, is a positive constant. [See Figure 9.27(a).]

 $d_2 - d_1$ is a positive constant.

The graph of a hyperbola has two disconnected parts called the **branches**. The line through the two foci intersects the hyperbola at two points called the **vertices**.

The line segment connecting the vertices is the **transverse axis**, and the midpoint of the transverse axis is the **center** of the hyperbola [see Figure 9.27(b)].

The development of the **standard form of the equation of a hyperbola** is similar to that of an ellipse.

Note, however, that *a*, *b* and *c* are related differently for hyperbolas than for ellipses.

For a hyperbola, the distance between the foci and the center is greater than the distance between the vertices and the center.

Introduction

Standard Equation of a Hyperbola

The standard form of the equation of a hyperbola with cen (h, k) is

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Transverse axis is horizontal.

Transverse axis is vertical.

The vertices are *a* units from the center, and the foci are *c* units from the center. Moreover, $c^2 = a^2 + b^2$. If the center of the hyperbola is at the origin (0, 0), then the equation takes one of the following forms.

Figure 9.28 shows both the horizontal and vertical orientations for a hyperbola.

Transverse axis (h, k) = x

(x-h)

 $(y-k)^2$

Transverse axis is horizontal.

Transverse axis is vertical.

Find the standard form of the equation of the hyperbola with foci (-1, 2) and (5, 2) and vertices (0, 2) and (4, 2).

Solution:

By the Midpoint Formula, the center of the hyperbola occurs at the point (2, 2). Furthermore, c = 3 and a = 2, and it follows that

$$b = \sqrt{c^2 - a^2}$$
$$= \sqrt{3^2 - 2^2}$$
$$= \sqrt{9 - 4}$$
$$= \sqrt{5}$$

So, the hyperbola has a horizontal transverse axis, and the standard form of the equation of the hyperbola is

$$\frac{(x-2)^2}{2^2} - \frac{(y-2)^2}{(\sqrt{5})^2} = 1.$$

This equation simplifies to

$$\frac{(x-2)^2}{4} - \frac{(y-2)^2}{5} = 1.$$

Figure 9.29 shows the hyperbola.

Figure 9.29

Asymptotes of a Hyperbola

Asymptotes of a Hyperbola

Each hyperbola has two **asymptotes** that intersect at the center of the hyperbola. The asymptotes pass through the corners of a rectangle of dimensions 2a by 2b, with its center at (h, k) as shown in Figure 9.30.

Figure 9.30

Example 2 – Sketching a Hyperbola

Sketch the hyperbola whose equation is $4x^2 - y^2 = 16$.

Solution:

$$4x^{2} - y^{2} = 16$$
Write original equation.

$$\frac{4x^{2}}{16} - \frac{y^{2}}{16} = \frac{16}{16}$$
Divide each side by 16.

$$\frac{x^{2}}{2^{2}} - \frac{y^{2}}{4^{2}} = 1$$
Write in standard form.

Because the x²-term is positive, you can conclude that the transverse axis is horizontal.

So, the vertices occur at (-2, 0) and (2, 0) the endpoints of the conjugate axis occur at (0, -4) and (0, 4), and you can sketch the rectangle shown in Figure 9.31.

Figure 9.31

Finally, by drawing the asymptotes

$$y = 2x$$
 and $y = -2x$

through the corners of this rectangle, you can complete the sketch, as shown in Figure 9.32.

Figure 9.32

Example 3 – Finding the Asymptotes of a Hyperbola

Sketch the hyperbola given by

$$4x^2 - 3y^2 + 8x + 16 = 0$$

and find the equations of its asymptotes.

Solution:

$$4x^2 - 3y^2 + 8x + 16 = 0$$

Write original equation.

 $4(x^2 + 2x) - 3y^2 = -16$

Subtract 16 from each side and factor.

$$4(x^2 + 2x + 1) - 3y^2 = -16 + 4(1)$$

Complete the square.

$$4(x+1)^2 - 3y^2 = -12$$

Write in completed square form.

$$\frac{y^2}{2^2} - \frac{(x+1)^2}{\left(\sqrt{3}\right)^2} = 1$$

Write in standard form.

From this equation you can conclude that the hyperbola has a vertical transverse axis, is centered at (-1, 0) has vertices (-1, 2) and (-1, -2), and has a conjugate axis with endpoints $(-1 - \sqrt{3}, 0)$ and $(-1 + \sqrt{3}, 0)$. To sketch the hyperbola, draw a rectangle through these four points.

The asymptotes are the lines passing through the corners of the rectangle, as shown in Figure 9.34.

Finally, using a = 2 and $b = \sqrt{3}$, you can conclude that the equations of the asymptotes are

$$y = \frac{2}{\sqrt{3}}(x+1)$$
 and $y = -\frac{2}{\sqrt{3}}(x+1)$.

General Equations of Conics

General Equations of Conics

Classifying a Conic from Its General Equation

The graph of $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ is one of the following.

1. Circle:	A = C	$A \neq 0$
2. Parabola:	AC = 0	A = 0 or $C = 0$, but not both.
3. Ellipse:	AC > 0	A and C have like signs.
4. Hyperbola:	AC < 0	A and C have unlike signs.

Classify the graph of each equation.

a.
$$4x^2 - 9x + y - 5 = 0$$

b.
$$4x^2 - y^2 + 8x - 6y + 4 = 0$$

c.
$$2x^2 + 4y^2 - 4x + 12y = 0$$

d. $2x^2 + 2y^2 - 8x + 12y + 2 = 0$

Solution:

a. For the equation $4x^2 - 9x + y - 5 = 0^{\circ}$, you have

$$AC = 4(0) = 0.$$

23

b. For the equation $4x^2 - y^2 + 8x - 6y + 4 = 0$, you have

$$AC = 4(-1) < 0.$$

Hyperbola

So, the graph is a hyperbola.

c. For the equation $2x^2 + 4y^2 - 4x + 12y = 0$, you have

$$AC = 2(4) > 0.$$

So, the graph is an ellipse.

d. For the equation $2x^2 + 2y^2 - 8x + 12y + 2 = 0$, you have

Circle

$$A=C=2.$$

So, the graph is a circle.

25