

Copyright © Cengage Learning. All rights reserved.

What You Should Learn

- Find probabilities of events.
- Find probabilities of mutually exclusive events.
- Find probabilities of independent events.

The Probability of an Event

The Probability of an Event

Any happening whose result is uncertain is called an **experiment.**

The possible results of the experiment are **outcomes**, the set of all possible outcomes of the experiment is the **sample space** of the experiment, and any subcollection of a sample space is an **event**.

For instance, when a six-sided die is tossed, the sample space can be represented by the numbers 1 through 6. For the experiment to be fair, each of the outcomes is equally *likely*.

To describe a sample space in such a way that each outcome is equally likely, you must sometimes distinguish between or among various outcomes in ways that appear artificial.

Example 1 illustrates such a situation.

Example 1 – Finding the Sample Space

Find the sample space for each of the following.

- a. One coin is tossed.
- **b.** Two coins are tossed.
- c. Three coins are tossed.

Solution:

a. Because the coin will land either heads up (denoted by *H*) or tails up (denoted by *T*), the sample space *S* is

 $S = \{H, T\}.$

- **b.** Because either coin can land heads up or tails up, the possible outcomes are as follows.
 - *HH* = heads up on both coins

HT = heads up on first coin and tails up on second coin

- TH = tails up on first coin and heads up on second coin
- TT = tails up on both coins
- So, the sample space is

$$S = \{HH, HT, TH, TT\}.$$

Note that this list distinguishes between the two cases HT and TH even though these two outcomes appear to be similar. **c.** Following the notation in part (b), the sample space is $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$

Note that this list distinguishes among the cases and

HHT, HTH, and THH

and among the cases

HTT, THT, and IIH

The Probability of an Event

The Probability of an Event

If an event *E* has n(E) equally likely outcomes and its sample space *S* has n(S) equally likely outcomes, then the **probability** of event *E* is given by

 $P(E) = \frac{n(E)}{n(S)} \, .$

Because the number of outcomes in an event must be less than or equal to the number of outcomes in the sample space, the probability of an event must be a number from 0 to 1, inclusive.

The Probability of an Event

That is,

 $0 \le P(E) \le 1$

as indicated in Figure 8.13.

If P(E) = 0, then event *E* cannot occur, and is called an **impossible event**.

If P(E) = 1, then event must occur, and E is called a **certain event**.

Example 2 – Finding the Probability of an Event

- **a.** Two coins are tossed. What is the probability that both land heads up?
- **b.** A card is drawn at random from a standard deck of playing cards. What is the probability that it is an ace?

Solution:

a. Following the procedure in Example 1(b), let

$$E = \{HH\}$$

and

 $S = \{HH, HT, TH, TT\}.$

The probability of getting two heads is

$$P(E) = \frac{n(E)}{n(S)} = \frac{1}{4}.$$

b. Because there are 52 cards in a standard deck of playing cards and there are four aces (one of each suit), the probability of drawing an ace is

$$P(E) = \frac{n(E)}{n(S)} = \frac{4}{52} = \frac{1}{13}.$$

Mutually Exclusive Events

Mutually Exclusive Events

Two events *A* and *B* (from the same sample space) are **mutually exclusive** when *A* and *B* have no outcomes in common.

In the terminology of sets, the intersection of A and B is the empty set, which implies that

 $P(A \cap B) = 0.$

For instance, when two dice are tossed, the event *A* of rolling a total of 6 and the event *B* of rolling a total of 9 are mutually exclusive.

Mutually Exclusive Events

To find the probability that one or the other of two mutually exclusive events will occur, you can *add* their individual probabilities.

Probability of the Union of Two Events

If *A* and *B* are events in the same sample space, then the probability of *A* or *B* occurring is given by

 $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

If A and B are mutually exclusive, then

 $P(A \cup B) = P(A) + P(B).$

Example 5 – The Probability of a Union

One card is selected at random from a standard deck of 52 playing cards. What is the probability that the card is either a heart or a face card?

Solution:

Because the deck has 13 hearts, the probability of selecting a heart (event A) is

$$P(A) = \frac{13}{52}.$$

Example 5 – Solution

Similarly, because the deck has 12 face cards, the probability of selecting a face card (event *B*) is

$$P(B) = \frac{12}{52}$$

Because three of the cards are hearts and face cards (see Figure 8.16), it follows that

$$P(A \cap B) = \frac{3}{52}$$

Figure 8.16

Finally, applying the formula for the probability of the union of two events, you can conclude that the probability of selecting a heart or a face card is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= $\frac{13}{52} + \frac{12}{52} - \frac{3}{52}$
= $\frac{22}{52}$
≈ 0.42.

Independent Events

Two events are **independent** when the occurrence of one has no effect on the occurrence of the other.

For instance, rolling a total of 12 with two six-sided dice has no effect on the outcome of future rolls of the dice. (See Figure 8.17.)

To find the probability that two independent events will occur, *multiply* the probabilities of each.

Probability of Independent Events

If *A* and *B* are **independent events**, then the probability that both *A* and *B* will occur is given by

 $P(A \text{ and } B) = P(A) \cdot P(B).$

A random number generator on a computer selects three integers from 1 to 20. What is the probability that all three numbers are less than or equal to 5?

Solution:

The probability of selecting a number from 1 to 5 is

$$P(A) = \frac{5}{20} = \frac{1}{4}.$$

So, the probability that all three numbers are less than or equal to 5 is

$$P(A) \cdot P(A) \cdot P(A) = \left(\frac{1}{4}\right) \left(\frac{1}{4}\right) \left(\frac{1}{4}\right) = \frac{1}{64}$$