6.3

Vectors in the Plane

What You Should Learn

- Represent vectors as directed line segments.
- Write the component forms of vectors.
- Perform basic vector operations and represent vectors graphically.
- Write vectors as linear combinations of unit vectors.

What You Should Learn

- Find the direction angles of vectors.
- Use vectors to model and solve real-life problems.

Introduction

Introduction

Many quantities in geometry and physics, such as area, time, and temperature, can be represented by a single real number. Other quantities, such as force and velocity, involve both *magnitude* and *direction* and cannot be completely characterized by a single real number. To represent such a quantity, you can use a **directed line segment**, as shown in Figure 6.17.

Figure 6.17

Introduction

The set of all directed line segments that are equivalent to a given directed line segment \overline{PQ} vector v in the plane, written (meaning start at P and go towards/through Q):

$$\mathbf{v} = \overline{PQ}$$
.

Vectors are denoted by lowercase, boldface letters such as **u**, **v** and **w**.

Example 1 – Equivalent Directed Line Segments

Let **u** be represented by the directed line segment from

$$P(0, 0)$$
 to $Q(3, 2)$

and let v be represented by the directed line segment from

$$R(1, 2)$$
 to $S(4, 4)$

as shown in Figure 6.19. Show that $\mathbf{u} = \mathbf{v}$.

Figure 6.19

Example 1 – Solution

From the Distance Formula, it follows that \overrightarrow{PQ} and \overrightarrow{RS} ve the same magnitude.

$$\|\overrightarrow{PQ}\| = \sqrt{(3-0)^2 + (2-0)^2} = \sqrt{13}$$

$$\|\overrightarrow{RS}\| = \sqrt{(4-1)^2 + (4-2)^2} = \sqrt{13}$$

Moreover, both line segments have the *same direction*, because they are both directed toward the upper right on lines having the same slope.

Slope of
$$\overrightarrow{PQ} = \frac{2-0}{3-0} = \frac{2}{3}$$

Example 1 – Solution

Slope of
$$\overrightarrow{RS} = \frac{4-2}{4-1} = \frac{2}{3}$$

So, \overrightarrow{PQ} and \overrightarrow{RS} have the same magnitude and direction, and it follows that $\mathbf{u} = \mathbf{v}$.

The directed line segment whose initial point is the origin is often the most convenient representative of a set of equivalent directed line segments. This representative of the vector **v** is in **standard position**.

A vector whose initial point is at the origin (0, 0) can be uniquely represented by the coordinates of its terminal point (v_1, v_2) . This is the **component form of a vector v**, written as

$$\mathbf{v} = \langle v_1, v_2 \rangle$$

The coordinates v_1 and v_2 are the *components* of **v**. If both the initial point and the terminal point lie at the origin, then **v** is the **zero vector** and is denoted by $\mathbf{0} = \langle 0, 0 \rangle$.

Component Form of a Vector

The component form of the vector with initial point $P(p_1, p_2)$ and terminal point $Q(q_1, q_2)$ is given by

$$\overrightarrow{PQ} = \langle q_1 - p_1, q_2 - p_2 \rangle = \langle v_1, v_2 \rangle = \mathbf{v}.$$

The magnitude (or length) of v is given by

$$\|\mathbf{v}\| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \sqrt{v_1^2 + v_2^2}.$$

If $\|\mathbf{v}\| = 1$, then \mathbf{v} is a **unit vector.** Moreover, $\|\mathbf{v}\| = 0$ if and only if \mathbf{v} is the zero vector $\mathbf{0}$.

Two vectors $\mathbf{u} = \langle u_1, u_2 \rangle$, $equ^{\mathbf{v}} = \langle v_1, v_2 \rangle$ ly if $u_1 = v_1$ and $u_2 = v_2$.

For instance, in Example 1, the vector \mathbf{u} from P(0, 0) to Q(3, 2) is

$$\mathbf{u} = \overrightarrow{PQ} = \langle 3 - 0, 2 - 0 \rangle = \langle 3, 2 \rangle$$

and the vector \mathbf{v} from R(1, 2) to S(4, 4) is

$$\mathbf{v} = \overrightarrow{RS} = \langle 4 - 1, 4 - 2 \rangle = \langle 3, 2 \rangle.$$

Example 1 – Finding the Component Form of a Vector

Find the component form and magnitude of the vector \mathbf{v} that has initial point (4, -7) and terminal point (-1, 5).

Solution:

Let

$$P(4, -7) = (p_1, p_2)$$

and

$$Q(-1, 5) = (q_1, q_2)$$

as shown in Figure 6.20.

Example 1 – Solution

Then, the components of $\mathbf{v} = \langle v_1, v_2 \rangle$

$$v_1 = q_1 - p_1 = -1 - 4 = -5$$

$$v_2 = q_2 - p_2 = 5 - (-7) = 12.$$

So, $\mathbf{v} = \langle -5, 12 \rangle$ magnitude of \mathbf{v} is

$$\|\mathbf{v}\| = \sqrt{(-5)^2 + 12^2}$$

$$=\sqrt{169}$$

$$= 13.$$

The two basic vector operations are **scalar multiplication** and **vector addition**. Geometrically, the product of a vector \mathbf{v} and a scalar k is the vector that is |k| times as long as \mathbf{v} . If k is positive, then $k\mathbf{v}$ has the same direction as \mathbf{v} , and if k is negative, then $k\mathbf{v}$ has the opposite direction of \mathbf{v} , as shown in Figure 6.21.

To add two vectors **u** and **v** geometrically, first position them (without changing their lengths or directions) so that the initial point of the second vector **v** coincides with the terminal point of the first vector **u** (head to tail). The sum **u** + **v** is the vector formed by joining the initial point of the first vector **u** with the terminal point of the second vector **v**, as shown in Figure 6.22.

The vector **u** + **v** is often called the **resultant** of vector addition

Definition of Vector Addition and Scalar Multiplication

Let $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ be vectors and let k be a scalar (a real number). Then the **sum** of **u** and **v** is the vector

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$$
 Sum

and the scalar multiple of k times u is the vector

$$k\mathbf{u} = k\langle u_1, u_2 \rangle = \langle ku_1, ku_2 \rangle$$
. Scalar multiple

The **negative** of $\mathbf{v} = \langle v_1, v_2 \rangle$

$$-\mathbf{v} = (-1)\mathbf{v}$$
$$= \langle -v_1, -v_2 \rangle$$

Negative

and the **difference** of **u** and **v** is

$$u - v = u + (-v)$$

= $\langle u_1 - v_1, u_2 - v_2 \rangle$.

Add (-v). See figure 6.23.

Difference

Example 3 – Vector Operations

Let $\mathbf{v} = \langle -2, 5 \rangle$ anc $\mathbf{w} = \langle 3, 4 \rangle$, of the following vectors.

a. 2vb. w - vc. v + 2w

Solution:

a. Because vou have $\mathbf{v} = \langle -2, 5 \rangle$ $2\mathbf{v} = 2\langle -2, 5 \rangle$ $= \langle 2(-2), 2(5) \rangle$

A sketch of $2\mathbf{v}$ is shown in Figure 6.24. $\frac{-4}{-8}$

Figure 6.24

Example 3(b) - Solution

The difference of w and v is

$$\mathbf{w} - \mathbf{v} = \langle 3, 4 \rangle - \langle -2, 5 \rangle$$
$$= \langle 3 - (-2), 4 - 5 \rangle$$
$$= \langle 5, -1 \rangle.$$

A sketch of $\mathbf{w} - \mathbf{v}$ is shown in Figure 6.25. Note that the figure shows the vector difference $\mathbf{w} - \mathbf{v}$ as the sum $\mathbf{w} + (-\mathbf{v})$.

Figure 6.25

Example 3(c) - Solution

The sum of v and 2w is

$$\mathbf{v} + 2\mathbf{w} = \langle -2, 5 \rangle + 2\langle 3, 4 \rangle$$

$$= \langle -2, 5 \rangle + \langle 2(3), 2(4) \rangle$$

$$= \langle -2, 5 \rangle + \langle 6, 8 \rangle$$

$$= \langle -2 + 6, 5 + 8 \rangle$$

$$= \langle 4, 13 \rangle.$$

A sketch of **v** + 2**w** is shown in Figure 6.26. Read slide 24, but do not copy it down.

Figure 6.26

Properties of Vector Addition and Scalar Multiplication

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors and let c and d be scalars. Then the following properties are true.

1.
$$u + v = v + u$$

2.
$$(u + v) + w = u + (v + w)$$

3.
$$u + 0 = u$$

4.
$$u + (-u) = 0$$

5.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

$$6. (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

8.
$$1(\mathbf{u}) = \mathbf{u}, 0(\mathbf{u}) = \mathbf{0}$$

9.
$$||c\mathbf{v}|| = |c| ||\mathbf{v}||$$

Unit Vectors

Unit Vectors

In many applications of vectors, it is useful to find a unit vector that has the same direction as a given nonzero vector **v**. To do this, you can divide **v** by its length to obtain

$$\mathbf{u} = \text{unit vector} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \left(\frac{1}{\|\mathbf{v}\|}\right) \mathbf{v}.$$
 Unit vector in direction of \mathbf{v}

Note that **u** is a scalar multiple of **v**. The vector **u** has a magnitude of 1 and the same direction as **v**. The vector **u** is called a **unit vector in the direction of v**.

Example 4 – Finding a Unit Vector

Find a unit vector in the direction of $\mathbf{v} = \langle -2, 5 \rangle$

Solution:

The unit vector in the direction of **v** is

$$\frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{\langle -2, 5 \rangle}{\sqrt{(-2)^2 + 5^2}}$$
$$= \frac{1}{\sqrt{4 + 25}} \langle -2, 5 \rangle$$
$$= \frac{1}{\sqrt{29}} \langle -2, 5 \rangle$$

Example 4 – Solution

$$= \left\langle \frac{-2}{\sqrt{29}}, \frac{5}{\sqrt{29}} \right\rangle$$
$$= \left\langle \frac{-2\sqrt{29}}{29}, \frac{5\sqrt{29}}{29} \right\rangle.$$

Unit Vectors

The unit vectors $\langle 1, 0 \rangle_d$ $\langle 0, 1 \rangle$ called the **standard unit vectors** and are denoted by

and
$$\mathbf{i} = \langle 1, 0 \rangle$$
 $\mathbf{j} = \langle 0, 1 \rangle$

as shown in Figure 6.27.(Note that the lowercase letter is written in boldface to distinguish it from the imaginary number $i = \sqrt{-1}$.

Figure 6.27

Unit Vectors

These vectors can be used to represent any vector $\mathbf{v} = \langle v_1, v_2 \rangle$ as follows.

$$\mathbf{v} = \langle v_1, v_2 \rangle$$

$$= v_1 \langle 1, 0 \rangle + v_2 \langle 0, 1 \rangle$$

$$= v_1 \mathbf{i} + v_2 \mathbf{j}$$

The scalars v_1 and v_2 are called the **horizontal and** vertical components of \mathbf{v} , respectively. The vector sum $v_1\mathbf{i} + v_2\mathbf{j}$ a linear combination of the vectors \mathbf{i} and \mathbf{j} . Any vector in the plane can be written as a linear combination of the standard unit vectors \mathbf{i} and \mathbf{j} .

Example 5 – Writing a Linear Combination of Unit Vectors

Let **u** be the vector with initial point (2, –5) and terminal point (–1, 3). Write **u** as a linear combination of the standard unit vectors **i** and **j**.

Solution:

Begin by writing the component form of the vector **u**.

$$\mathbf{u} = \langle -1 - 2, 3 - (-5) \rangle$$
$$= \langle -3\mathbf{i} + 8\mathbf{j}$$

If \mathbf{u} is a *unit vector* such that θ is the angle (measured counterclockwise) from the positive x-axis to \mathbf{u} , then the terminal point of \mathbf{u} lies on the unit circle and you have as

$$\mathbf{u} = \langle x, y \rangle = \langle \cos \theta, \sin \theta \rangle = (\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}$$

shown in Figure 6.29. The angle θ is the **direction** angle of the vector **u**. Read slides 33 & 34, but do not copy them down.

Suppose that **u** is a unit vector with direction angle θ . If is $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$ hat makes an angle θ with the positive x-axis, then it has the same direction as **u** and you can write

$$\mathbf{v} = \|\mathbf{v}\| \langle \cos \theta, \sin \theta \rangle = \|\mathbf{v}\| (\cos \theta)\mathbf{i} + \|\mathbf{v}\| (\sin \theta)\mathbf{j}.$$

For instance, the vector **v** of length 3 that makes an angle of 30° with the positive *x*-axis is given by

$${f v}=3(\cos 30^\circ){f i}+3(\sin 30^\circ){f j}={3\sqrt{3}\over 2}{f i}+{3\over 2}{f j}$$
 where $\|{f v}\|=3.$

Because $\mathbf{v} = a\mathbf{i} + b\mathbf{j} = \|\mathbf{v}\|(\cos\theta)\mathbf{i} + \|\mathbf{v}\|(\sin\theta)\mathbf{j}_{\mathsf{n}\mathsf{r}}\mathbf{v}\|_{\mathsf{s}\mathsf{r}}$ determined from

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
Quotient identity
$$= \frac{\|\mathbf{v}\| \sin \theta}{\|\mathbf{v}\| \cos \theta}$$
Multiply numerator and denominator by $\|\mathbf{v}\|$

$$= \frac{b}{a}$$
Simplify.

Example 7 – Finding Direction Angles of Vectors

Find the direction angle of the vector.

$$u = 3i + 3j$$

Solution:

The direction angle is

$$\tan \theta = \frac{b}{a} = \frac{3}{3} = 1.$$

So, $\theta = 45^{\circ}$, as shown in Figure 6.30.

Figure 6.30