

Copyright © Cengage Learning. All rights reserved.

What You Should Learn

- Evaluate and graph inverse sine functions
- Evaluate and graph other inverse trigonometric functions
- Evaluate compositions of trigonometric functions

Inverse Sine Function

We have know that for a function to have an inverse function, it must be one-to-one—that is, it must pass the Horizontal Line Test.

In Figure 4.67 it is obvious that $y = \sin x$ does not pass the test because different values of x yield the same y-value.

Inverse Sine Function

However, when you restrict the domain to the interval $-\pi/2 \le x \le \pi/2$ (corresponding to the black portion of the graph in Figure 4.67), the following properties hold.

1. On the interval $[-\pi/2, \pi/2]$, the function $y = \sin x$ is increasing.

2. On the interval $[-\pi/2, \pi/2]$, $y = \sin x$ takes on its full range

of values, $-1 \le \sin x \le 1$.

3. On the interval $[-\pi/2, \pi/2]$, $y = \sin x$ is one-to-one.

So, on the restricted domain $-\pi/2 \le x \le \pi/2$, $y = \sin x$ has a unique inverse function called the **inverse sine function**. It is denoted by

 $y = \arcsin x$ or $y = \sin^{-1} x$.

The notation $\sin^{-1} x$ is consistent with the inverse function notation $f^{-1}(x)$. The arcsin x notation (read as "the arcsine of x") comes from the association of a central angle with its intercepted *arc length* on a unit circle.

Inverse Sine Function

So, arcsin *x* means the angle (or arc) whose sine is *x*. Both notations, arcsin *x* and sin⁻¹ *x*, are commonly used in mathematics, so remember that sin⁻¹ *x* denotes the *inverse* sine function rather than 1/sin *x*. The values of arcsin *x* lie in the interval $-\pi/2 \le \arcsin x \le \pi/2$.

Definition of Inverse Sine Function The **inverse sine function** is defined by $y = \arcsin x$ if and only if $\sin y = x$ where $-1 \le x \le 1$ and $-\pi/2 \le y \le \pi/2$. The domain of $y = \arcsin x$ is [-1, 1] and the range is $[-\pi/2, \pi/2]$.

Example 1 – Evaluating the Inverse Sine Function

If possible, find the exact value.

a.
$$\operatorname{arcsin}\left(-\frac{1}{2}\right)^2$$
 $\operatorname{sin}^{-1}\frac{\sqrt{3}}{2}$

Solution:

a. Because $\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$ s in $-\frac{\pi}{6}$, it $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ follows that

$$\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}.$$

Angle whose sine is

Example 1 – Solution

b. Because $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ lies in $\frac{\pi}{3}$, $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ s that $\sin^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{3}$. Angle whose sine is $\sqrt{3}/2$

c. It is not possible to evaluate $y = \sin^{-1} x$ at x = 2 because there is no angle whose sine is 2. Remember that the domain of the inverse sine function is [-1, 1].

Example 2 – Graphing the Arcsine Function

Sketch a graph of $y = \arcsin x$ by hand.

Solution:

By definition, the equations

 $y = \arcsin x$ and $\sin y = x$

are equivalent for $-\pi/2 \le y \le \pi/2$. So, their graphs are the same. For the interval $[-\pi/2, \pi/2]$ you can assign values to *y* in the second equation to make a table of values.

У	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$
$x = \sin y$	-1	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	1

Then plot the points and connect them with a smooth curve. The resulting graph of $y = \arcsin x$ is shown in Figure 4.68.

Figure 4.68

Note that it is the reflection (in the line y = x) of the black portion of the graph in Figure 4.67.

Figure 4.67

Remember that the domain of $y = \arcsin x$ is the closed interval [-1, 1] and the range is the closed interval [$-\pi/2$, $\pi/2$].

Other Inverse Trigonometric Functions

Other Inverse Trigonometric Functions

The cosine function is decreasing and one-to-one on the interval $0 \le x \le \pi$, as shown in Figure 4.69.

Figure 4.69

Consequently, on this interval the cosine function has an inverse function—the **inverse cosine function**—denoted by

 $y = \arccos x \text{ or } y = \cos^{-1} x.$

Because $y = \arccos x$ and $x = \cos y$ are equivalent for $0 \le y \le \pi$, their graphs are the same, and can be confirmed by the following table of values.

y
$$0 \quad \frac{\pi}{6} \quad \frac{\pi}{3} \quad \frac{\pi}{2} \quad \frac{2\pi}{3} \quad \frac{5\pi}{6} \quad \pi$$

x = cos y $1 \quad \frac{\sqrt{3}}{2} \quad \frac{1}{2} \quad 0 \quad -\frac{1}{2} \quad -\frac{\sqrt{3}}{2} \quad -1$

Similarly, you can define an **inverse tangent function** by restricting the domain of $y = \tan x$ to the interval $(-\pi/2, \pi/2)$.

The inverse tangent function is denoted by

 $y = \arctan x$ or $y = \tan^{-1} x$.

Because *y* = arctan *x* and *x* = tan *y* are equivalent for $-\pi/2 < y < \pi/2$ their graphs are the same, and can be confirmed by the following table of values.

у	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$
$x = \tan y$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1

Other Inverse Trigonometric Functions

The following list summarizes the definitions of the three most common inverse trigonometric functions.

Definition of the Inverse Trigonometric Functions						
Function	Domain	Range				
$y = \arcsin x$ if and only if $\sin y = x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$				
$y = \arccos x$ if and only if $\cos y = x$	$-1 \le x \le 1$	$0 \le y \le \pi$				
$y = \arctan x$ if and only if $\tan y = x$	$-\infty < x < \infty$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$				

Example 3 – Evaluating Inverse Trigonometric Functions

Find the exact value.

- **a.** $\frac{\sqrt{2}}{2}$ **b.** $\cos^{-1}(-1)$
- **c.** arctan 0 **d.** tan⁻¹(-1)

Solution:

a. Because $\cos(\pi/4) = \sqrt{2}/2$, and $\pi/4$ lies in [0, π], it follows that

$$\arccos \frac{\sqrt{2}}{2} = \frac{\pi}{4}.$$

Angle whose cosine is

 $\frac{\sqrt{2}}{2}$

b. Because $\cos \pi = -1$ and π lies in [0, π] it follows that

$$\cos^{-1}(-1) = \pi.$$

Angle whose cosine is -1

c. Because tan 0 = 0, and 0 lies in $(-\pi/2, \pi/2)$, it follows that

Angle whose tangent is 0s

 $\arctan 0 = 0.$

d. Because $tan(-\pi/4) = -1$ and $-\pi/4$ lies in $(-\pi/2, \pi/2)$, it follows that

$$\tan^{-1}(-1) = -\frac{\pi}{4}.$$

Angle whose tangent is -1

Compositions of Functions

Compositions of Functions

We have know that for all x in the domains of f and f^{-1} , inverse functions have the properties

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

Inverse PropertiesIf $-1 \le x \le 1$ and $-\pi/2 \le y \le \pi/2$, thensin(arcsin x) = x and arcsin(sin y) = y.If $-1 \le x \le 1$ and $0 \le y \le \pi$, thencos(arccos x) = x and arccos(cos y) = y.If x is a real number and $-\pi/2 < y < \pi/2$, thentan(arctan x) = x and arctan(tan y) = y.

Compositions of Functions

Keep in mind that these inverse properties do not apply for arbitrary values of *x* and *y*. For instance,

$$\operatorname{arcsin}\left(\sin\frac{3\pi}{2}\right) = \operatorname{arcsin}(-1) = -\frac{\pi}{2} \neq \frac{3\pi}{2}.$$

In other words, the property

 $\arcsin(\sin y) = y$

is not valid for values of y outside the interval $[-\pi/2, \pi/2]$.

Example 6 – Using Inverse Properties

If possible, find the exact value.

a. tan[arctan(-5)] **b.** $\operatorname{arcsin}\left(\sin\frac{5\pi}{3}\right)$

c. ($\cos^{-1}\pi$)

Solution:

 a. Because –5 lies in the domain of the arctangent function, the inverse property applies, and you have

tan[arctan(-5)] = -5.

b. In this case, $5\pi/3$ does not lie within the range of the arcsine function, $-\pi/2 \le y \le \pi/2$. However, $5\pi/3$ is coterminal with

$$\frac{5\pi}{3} - 2\pi = -\frac{\pi}{3}$$

which does lie in the range of the arcsine function, and you have

$$\operatorname{arcsin}\left(\sin\frac{5\pi}{3}\right) = \operatorname{arcsin}\left[\sin\left(-\frac{\pi}{3}\right)\right] = -\frac{\pi}{3}.$$

c. The expression $cos(cos^{-1}\pi)$ is not defined because $cos^{-1}\pi$ is not defined. Remember that the domain of the inverse cosine function is [-1, 1].