AP® CALCULUS AB 2010 SCORING GUIDELINES

Question 6

Solutions to the differential equation $\frac{dy}{dx} = xy^3$ also satisfy $\frac{d^2y}{dy^2} = y^3 \left(1 + 3x^2y^2\right)$. Let y = f(x) be a particular solution to the differential equation $\frac{dy}{dx} = xy^3$ with f(1) = 2.

- (a) Write an equation for the line tangent to the graph of y = f(x) at x = 1.
- (b) Use the tangent line equation from part (a) to approximate f(1.1). Given that f(x) > 0 for 1 < x < 1.1, is the approximation for f(1.1) greater than or less than f(1.1)? Explain your reasoning.
- (c) Find the particular solution y = f(x) with initial condition f(1) = 2.

(a)
$$f'(1) = \frac{dy}{dx}\Big|_{(1, 2)} = 8$$

An equation of the tangent line is y = 2 + 8(x - 1).

 $2: \begin{cases} 1: f'(1) \\ 1: answer \end{cases}$

(b) f(1.1) = 2.8Since y = f(x) > 0 on the interval $1 \le x < 1.1$,

 $\frac{d^2y}{dx^2} = y^3 \left(1 + 3x^2y^2\right) > 0 \text{ on this interval.}$

Therefore on the interval 1 < x < 1.1, the line tangent to the graph of y = f(x) at x = 1 lies below the curve and the approximation 2.8 is less than f(1.1).

 $2: \begin{cases} 1: approximation \\ 1: conclusion with explanation \end{cases}$

(c) $\frac{dy}{dx} = xy^3$ $\int \frac{1}{y^2} dy = \int x \, dx$ $-\frac{1}{2y^2} = \frac{y^2}{2} + C$ $-\frac{1}{2 \cdot 2^2} = \frac{1^2}{2} + C \Rightarrow C = -\frac{5}{8}$ $y^2 = \frac{1}{\frac{5}{4} - x^2}$ $f(x) = \frac{2}{\sqrt{5} - 4x^2}, \quad -\frac{\sqrt{5}}{2} < x < \frac{\sqrt{5}}{2}$

Note: max 2/5 [1-1-0-0-0] if no constant of integration

Note: 0/5 if no separation of variables

AP® CALCULUS AB 2010 SCORING GUIDELINES (Form B)

Question 5

Consider the differential equation $\frac{dy}{dx} = \frac{x+1}{y}$.

(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and for -1 < x < 1, sketch the solution curve that passes through the point (0, -1).

(Note: Use the axes provided in the exam booklet.)

- (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the *xy*-plane for which $y \neq 0$. Describe all points in the *xy*-plane, $y \neq 0$, for which $\frac{dy}{dx} = -1$.
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = -2.
- (a)

- 1 : zero slopes
 3 : { 1 : nonzero slopes
 - 1 : solution curve through (0, -1)

- (b) $-1 = \frac{x+1}{y} \Rightarrow y = -x-1$
 - $\frac{dy}{dx} = -1$ for all (x, y) with y = -x 1 and $y \ne 0$
- $\frac{dy}{dy} = -1 \text{ for all } (x, y)$
- (c) $\int y \, dy = \int (x+1) \, dx$ $\frac{y^2}{2} = \frac{x^2}{2} + x + C$ $\frac{(-2)^2}{2} = \frac{0^2}{2} + 0 + C \implies C = 2$ $y^2 = x^4 + 2x + 4$

Since the solution goes through (0,-2), y must be negative. Therefore $y = -\sqrt{x^2 + 2x + 4}$.

- 1: description
 - [1 : separates variables
 - | 1 : antiderivatives
- 5: { 1 : constant of integration
 - 1 : uses initial condition
 - 1 : solves for y

Note: max 2/5 [1-1-0-0-0] if no constant of integration

Note: 0/5 if no separation of variables

AP® CALCULUS AB 2006 SCORING GUIDELINES

Question 5

Consider the differential equation $\frac{dy}{dx} = \frac{1+y}{x}$, where $x \neq 0$.

(a) On the axes provided, sketch a slope field for the given differential equation at the eight points indicated. (Note: Use the axes provided in the pink exam booklet.)

(b) Find the particular solution y = f(x) to the differential equation with the initial condition f(-1) = 1 and state its domain.

(a)

2 : sign of slope at each point and relative steepness of slope lines in rows and columns

(b) $\frac{1}{1+y} \, dy = \frac{1}{x} \, dx$

$$\ln|1+y| = \ln|x| + K$$

$$|1+y| = e^{2n(x) + K}$$

$$1 + y = C|x|$$

$$2 = 0$$

$$I + y = 2|x|$$

$$y = 2|x| + 1$$
 and $x < 0$

or

$$y = -2x - 1 \text{ and } x < 0$$

6: { 1 : separates variables 2 : antiderivatives 1 : constant of integration 1 : uses initial condition 1 : solves for y

Note: max 3/6 [1-2-0-0-0] if no constant of integration

Note: 0/6 if no separation of variables

1 : domain