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% 8 Analyzing the Graph of a Function

LEARNING OBJECTIVES In this section, we’ll consolidate and refine many of the ideas we’ve encountered
in Section 2.1 you will see related to functions. When functions and graphs are applied as real-world models, we
create numeric and visual representations that enable an informed response to gues-

how we can . . ] . ; s . :
tions involving maximum efficiency, positive returns, increasing costs, and other rela-
Q) A. Determine whether a tionships that can have a great impact on our lives,
function is even, odd, or
neither
Q B. Determine intervals A. Graphs and Symmetry

where a function is
positive or negative

[ C. Determine where a
function is increasing or

While the domain and range of a function will remain dominant themes in our study,
for the moment we turn our attention to other characteristics of a function’s graph,
We begin with the concept of symmetry.

decreasing
Qno. Idgqtify the llnaximfum and  Symmetry with Respect to the y-Axis Figure 2.1
;l:l:_lné;l:;:n vplies ot a Consider the graph of f(x) = x* — 4x* shown in Fig- L)
ure 2.1, where the portion of the graph to the left of the (-2.2,~4) (2.2, ~4)

[ E. Locate local maximum
and minimum values
using a graphing
calculator

y-axis appears to be a mirror image of the portion to the
right. A function is symmetric to the y-axis if, given
any point (x, y) on the graph, the point (—x, ) is also (=20 2,0
on the graph, We note that (—1, —3) is on the graph, as
is (1, =3}, and that (=2, 0} is an x-intercept of the
graph, as is (2, 0). Functions that are symmetric with
respect to the y-axis are also known as even functions (=1, =3)_, [(1,=B)
and in general we have: '

Even Functions: y-Axis Symmetry

A function f is an even function if and only if, for each point (x, ¥) on the graph of f,
the point (—x, y) is also on the graph. In function notation

f(=x) = fx)

Symmetry can be a great help in graphing new functions, enabling us to plot fewer
points and to complete the graph using properties of symmetry.

EXAMPLE 1 Graphing an Even Function Using Symmetry |

a. The function g(x) in Figure 2.2 (shown in solid blue) is known to be even.
Draw the complete graph.

b. Show that A(x} = x° is an even function using Figure 2.2
the arbitrary value x = & [show A{—k) = h(k)], y

4

then sketch the complete graph using h(0), |

|
h(1), h(8), and y-axis symmetry, \ RN g e
= 1.2
Solution a. To complete the graph of g (see Figure 2.2) ) / ‘f | oo |
use the points (—4, 1), (-2, —3),(—1, 2), dud, Wi L 2Y
|
|
|

and y-axis symmetry to find additional points. A ". P
The corresponding ordered pairs are (4, 1), \ s

(2, =3), and (1, 2), which we use to help (=2, %) 3. 3 i
draw a “mirror image” of the partial graph - I

given.

106 2-2
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WORTHY OF NOTE

The proof can also be demonstrated
by writing x* as (x*)2, and you are
asked 10 complets this proofin
Exercise 69.

Section 2.1 Analyzing the Graph of a Function 107

2z, N i
b. To prove that A(x) = x° is an even function, we ‘|

must show h( :k) = h(k) for any constant k. Figure 2.3
After writing ** as [x*]}, we have: N i
h(—k) & (k) first step of proof ‘\g\:&- 4 T Yal ((b y |
[(~kPT 2 [(RPF  evaluate i~ and hik) ;I\ /H i
Yy — 1, 1) W F
; (—k)? 2 v (k)?  radical form [ ih' : =
-1 (0, nx

\3/1? = VIA/ o (k7% =¥

Using A(0) = 0, (1) = 1, and #{8) = 4 with
y-axis symmetry produces the graph shown in
Figure 2.3,

-5

Now try Exercises 7 through 12

Symmetry with Respect to the Origin

Another common form of symmetry is known as symmetry to the origin, As the name
implies, the graph is somehow “centered” at (0, 0). This form of symmetry is easy to
see for closed figures with their center at (0, 0), like certain polygons, circles, and
ellipses (these will exhibit both y-axis symmetry and symmetry with respect to the
origin). Note the relation graphed in Figure 2.4 contains the points (—3, 3) and (3, —3),
along with (—1, ~4) and (1, 4). But the function f(x) in Figure 2.5 also contains these
points and is, in the same sense, symmetric to the origin (the paired points are on op-
posite sides of the x- and y-axes, and a like distance from the origin).

Flgure 2.4 Flgure 2.5

Y ¥
5 5
(1.4 (4

(=3, 3) (—3,3)

fix)

3, =3 (3,=3)
=1, -4 CAEL -4

§

Functions symmetric to the origin are known as odd functions and in general
we have:

Odd Functions: Symmetry About the Origin

A function fis an odd function if and only if, for each point (x, y) on the graph of f,
the point (—x, —y) is also on the graph. In function notation

f(=x) = =f(x)
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EXAMPLE 2

Solution

& A. You've just seen how
we can determine whether a
function is even, odd, or
nelther

Graphing an Odd Function Using Symmetry

a. In Figure 2.6, the function g(x) given (shown in solid blue) is known to be odd.
Draw the complete graph.

b. Show that A(x) = x* — 4x is an odd function using the arbitrary value x = &
[show A(—x)} = —h(x}], then sketch the graph using A(—2), ~(—1), h(0), and
odd symmetry.

a. To complete the graph of g, use the points (—6, 3), (—4, 0), and (2, 2) and |
odd symmetry to find additional points. The corresponding ordered pairs are
(6, —3), (4, 0), and (2, —2), which we use to help draw a “mirror image” of the
partial graph given (see Figure 2.6).

Figure 2.6 Flgure 2.7
LV ¥y
Y 10 3 I
\ (1) ('l..“ {l
"‘\ 'p.\
LY I/
(=6, 3)‘;_‘{—2;2! “]l
NELY (04l ) 1 20J |\ (2,0)
1] (—4, 0) \Q'_.- . X 4 J'fﬂ‘ 0) I
(2, —2) =16, —3)
.. |I‘ /l
X w(l,—3
§
10 =}

b. To prove that A(x} = x* — 4x is an odd function, we must show that
h(—k) = —h(k).
h(—k) £ —h(k)
(—k)* — 4(—k) 2 —[I — 4k]
-+ 4k = =i+ 4kv

Using A(—2) = 0, 4(—1) = 3, and 2(0) = 0 with symmetry about the origin
produces the graph shown in Figure 2.7,

Now try Exercises 13 through 24

Finally, some relations also exhibit a third form of symmetry, that of symmetry to
the x-axis. If the graph of a circle is centered at the origin, the graph has both odd and
even symmetry, and is also symmetric to the x-axis. Note that if a graph exhibits x-axis
symmetry, it cannot be the graph of a function,

B. Intervals Where a Function Is Positive or Negative

Consider the graph of f(x) = x* — 4 shown in Figure 2.8, which has x-intercepts at
(—2,0) and (2, 0). As in Section 1.5, the x-intercepts have the form (x, 0) and are called
the zeroes of the function (the x-input causes an output of 0). Just as zero on the num-
ber line separates negative numbers from positive numbers, the zeroes of a function
that crosses the x-axis separate x-intervals where a function is negative trom x-intervals
where the function is positive. Noting that outputs (y-values) are positive in Quadrants I
and I, f(x) > Oin intervals where its graph is above the x-axis. Conversely, f(x) < 0



WORTHY OF NOTE

These obsarvations form the basis
for studying polynomials of higher
degree In Chapter 4, where we
extend the idea to factors of the
form (x — ¥ In a study of roots of
multiplicity.

EXAMPLE 3

Solution
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in x-intervals where its graph is below the x-axis. To illustrate, compare the graph of f
in Figure 2.8, with that of g in Figure 2.9,

Figure 2.8 Figure 2.9
¥y ¥
5 5
Iq / l'.. P
T ey
I" \ f
(=2.00} (2.0 N\
—5 '\ ;'r 5 X i 4, m 5 X
l'.l I‘r'
N0, ~4)
5 3

The graph of fis a parabela, with x-intercepts of (—2, () and (2, 0). Using our pre-
vious observations, we note f(x) = 0 for x € (~oc0, ~2] U [2, 00) since the graph is
above the x-axis, and f(x) < 0 for x € (—2, 2). The graph of g is also a parabola, but
is entirely above or on the x-axis, showing g(x) = 0 for x € R. The difference is that
zeroes coming from factors of the form (x — r) (with degree 1) allow the graph to
cross the x-axis. The zeroes of f came from (x + 2)(x — 2) = 0. Zeroes that come
from factors of the form (x — r)° (with degree 2) cause the graph to “bounce” off the
x-axis (intersect without crossing) since all outputs must be nonnegative. The zero of
g came from (x — 4)* = 0.

Solving an Inequality Using a Graph

Use the graph of g(x) = x* — 24 — 4x + 8 given to solve the inequalities
a glx)=0 b. g(x) <0

From the graph, the zeroes of g (x-intercepts) ¥
occur at (—2, 0) and (2, 0). A i
a. For g(x) = 0, the graph must be on or above Y8 f
the x-axis, meaning the solution is o)

x € [—2,00). 5

b. For g(x) < 0, the graph must be below the
x-axis, and the solution is x € (— o0, —2). \
As we might have anticipated from the \/
graph, factoring by grouping gives >
g(x) = {x + 2)(x — 2) with the graph =9
crossing the x-axis at —2, and bouncing
off the x-axis (intersects without crossing)
atx = 2,

Now try Exerclses 25 through 28

Even if the function is not a polynomial, the zeroes can still be used to find
x-intervals where the function is positive or negative,
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EXAMPLE 4 Solving an Inequality Using a Graph Ay
For the graph of r(x) = Vx + 1 — 2 shown, solve :
a r(x) =0
b. r(x) >0 s
Solution a. The only zero of ris at (3, 0). The graph is on m (--""‘ = 10X

or below the x-axis forx € [—1, 3], so
r(x) = 0 in this interval.
b. The graph is above the x-axis for x € (3, 00),
and r(x) > 0in this interval. =1

Now try Exercises 29 through 32

E’. B. You've just seen how

we can determine intervals This study of inequalities shows how the graphical solutions studied in Section 1.5
where a function is positive or  are casily extended to the graph of a general function. It also strengthens the founda-
negative tion for the graphical solutions studied throughout this text.

C. Intervals Where a Function Is Increasing or Decreasing

In our study of linear graphs, we said a graph was increasing if it “rose” when
viewed from left to right. More generally, we say the graph of a function is increas-
ing on a given interval if larger and larger x-values produce larger and larger
y-values. This suggests the following tests for intervals where a function is increasing
or decreasing.

Increasing and Decreasing Functions

Given an interval [ that is a subset of the domain, with x; and x5 in f and x» > x;,
1. A function is increasing on 7 if f(x5) > f(x,) for all x, and x; in /
(targer inputs produce larger ouvtputs).
2. A function is decreasing on ! if f(x,) < f(x,) for all x; and x, in /
(larger inputs produce smaller outputs).

3. A function is constant on [ if f(x,) = f(x,) for all x; and x, in /
(larger inputs produce identical outputs).

flx)  f(x)is increasing on / —4fx)  fx)is decreasing on MW fix) is constant on §
fom) + L foed+ TN
"
f'/ \'\
rd »
foor A ) 4 --T_. fapt
S i'}f (xy) ' Flxy)
: : x'. ;
Interval f | Interval { < | Interval f |« >
X > and flxy) > flx)) Xy > xp and fxy) < flx)) X > 0y and f(x;) = flrp)
forallxef forallxef forallxef
graph rises when viewed graph falls when viewed graph is level when viewed

from left to right from left to right from left to dght



2-7
o Y1
3 ]
2 -2
"1 0
0 5
% B
2 E-l
1=
EXAMPLE 5
Solution
WORTHY OF NOTE

Questions about the behavior of a
function are asked with respect to
the y outpuis: is the funciion
positive, is the function increasing,
stc. Due to the input/output,
cause/effect nature of functions,
the response is given in terms of x,
that is, what is causing outputs to
be positive, or to be increasing.

EXAMPLE 6

Solution

ﬁc. You've just seen how
we can determine where a
function is ingreasing or
decreasing

Section 2.1 Analyzing the Geaph of a Function 111

Consider the graph of f(x) = —x° + 4x + 5 Figure 2.10
given in Figure 2.10. Since the parabola opens i
downward with the vertex at (2, 9), the function N
must increase until it reaches this peak atx = 2, and 4 ;
decrease thereafter. Notationally we’ll write this as
)T for x € (—c0, 2) and fx) for x € (2, o). (—1,0)/ .0
Using the interval shown below the figure, -5 /
we see that any larger input value from the interval / \
will indeed produce a larger output value, and f(x)T / \
on the interval. For instance, [ \

— 10
b= =

fo.5 \

and and

A > f(-2) fOe) > f)
8> -7

A caleulator check is shown in the figure, Note the outputs are increasing until x = 2,
then they begin decreasing.

Finding Intervals Where a Function Is Increasing
or Decreasing 5

Use the graph of v(x) given to name the interval(s) /
where v is increasing, decreasing, or constant. ey X

From left to right, the graph of v increases until r
leveling oft at (—2, 2), then it remains constant = 1] 5%
until reaching (1, 2). The graph then increases /
once again until reaching a peak at (3, 5) and
decreases thereafter. The result is v(x)T for

x € {—o0, —2) U (1, 3}, v(x)| forx € (3, 00), and
v(x) is constant forx € (=2, 1),

—

Now try Exercises 33 through 36

Notice the graph of f in Figure 2,10 and the graph of v in Example 5 have some-
thing in common. It appears that both the far left and far right branches of each graph
point downward (in the negative y-direction), We say that the end-behavior of both
graphs is identical, which is the term used to describe what happens to a graph as |x| be-
comes very farge. For x > 0, we say a graph is, “up on the right” or “down on the
right,” depending on the direction the “end” is pointing, For x < 0, we say the graph
is “up on the left” or “down on the left,” as the case may be.

Describing the End-Behavior of a Graph ¥

The graph of f(x) = x* — 3x is shown. Use the
graph to name intervals where f is increasing or [ {
decreasing, and comment on the end-behavior of ' A ],
the graph. [\ |

From the graph we observe that f(x)T for ' F— ~\
x € {—o0, —1) U (1, 00), and f(x}} forx € (—1, 1). [ Y
The end-behavior of the graph is down on the left,
and up on the right (down/up). L

Now try Exercises 37 through 40
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EXAMPLE 7

Solution

E’ D. You've just seen how
we can identify the maximum
and minimum values of a
function

D. Maximum and Minimum Values

The y-coordinate of the vertex of a parabola that opens downward, and the y-coordinate
of “peaks” from other graphs are called maximum values, A global maximum (also
called an absolure maximum) names the largest y-value over the entire domain, A
local maximum (also called a relative maximum) gives the largest range value in a
specified interval; and an endpoint maximum can occur at an endpoint of the domain.
The same can be said for any corresponding minimum values.

We will soon develop the ability to locate maximum and minimum values for
quadratic and other functions. In future courses, methods are developed to help locate
maximum and minimum values for almost ary function. For now, our work will rely
chiefly on a function’s graph.

Analyzing Characteristics of a Graph

Analyze the graph of function f shown in Figure 2,11
Figure 2.11. Include specific mention of ¥

, 10
a. domain and range, (5,7)

b. intervals where fis increasing or decreasing, (=35 7N
¢. maximum (max) and minimum (min) values, / \ /
d. intervals where f(x) = 0 and f(x) < 0, and / 0. 1)

N . . -1 1w x
¢. whether the function is even, odd, or neither. /’f

a. Using vertical and horizontal boundary lines
show the domain is x € R, with a range of: /
yE(—o0,7]. e
b. f(x)T forx € (—o0, —3) U (1, 5} shown Figure 2.12
in blue in Figure 2,12, and f(x){ for y
x € (=3,1)U (5, co) as shown in red, 10
c. From part (b) we find that y = 5 at (—3, 5) and (=3.5) {f"zl
y = T at (5, 7) are local maximums, with a P [ \
local minimum of y = 1 at (1, 1). The point (5, 7) = m;’ "\\f;‘: | \ B0
is also a global maximum (there is no global T ¢ L % .
minimum). \
d. f(x) = 0 forx € [—6, 8]; f(x) < O for \
x € (—oo, —6) U (8, co) \
e, The function is neither even nor odd. H

/

Now try Exercises 44 th rough 48 .

E. Locating Maximum and Minimum Values Using Technology

In Section 1.5, we used the @ @@ (CALC) 2:zero option of a graphing calcula-
tor to locate the zeroes/x-intercepts of a function. The maximum or minimum values
of a function are located in much the same way. To iliustrate, enter the function
y =x" — 3x — 2 as'Y, on the @& screen, then Figure 2.13

graph it in the window shown, where x € [ —4, 4] 5

and y € [—5,5]. As seen in Figure 2.13, it V120 3387 [
appears a local maximum occurs atx = —1 and [
a local minimum at x = 1. To actually find the i
local maximum, we access the @) T _4—s—s—ur . — |y
(CALC) 4:maximum option, which returns [
you to the graph and asks for a Left Bound?, a :
Right Bound?, and a Guess? as before, Here, ®=0 = -2
we entered a left bound of “—3,” a right bound -5
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of “0” and bypassed the guess option by press-
ing &) a third time (the calculator again sets
the “P" and “” markers to show the bounds
chosen). The cursor will then be located at the
local maximum in your selected interval, with
the coordinates displayed at the bottom of the
screen (Figure 2.14). Due to the algorithm
the calculator uses to find these values, a deci-
mal number very close to the expected value is
sometimes displayed, even if the actual value
is an integer (in Figure 2.14, —0.9999997 is

Flgare 2.14
5

113

; f‘"\;\;/

Haximum A
yi=-.5089997 IT=)

-3

displayed instead of —1). To check, we evaluate f(—1) and find the local maximum

is indeed 0.

% EXAMPLE 8 Locating Local Maximum and Minimum Values on a Graphing Calculator

Solution

& E. You've just seen how
we can locate local maximum
and minimum values using a
graphing calculator

1
Find the maximum and minimum values of f(x) = 5(x4 — 88X+ 7).

Begin by entering %(X4 — 8X? + 7)as'Y, on the @& screen, and graph the

function in the @& 6:ZStandard window. To locate the leftmost minimum value, |
we access the @ (CALC) 3:minimum option, and enter a left bound of
“—47” and a right bound of “—1” (Figure 2.15). After pressing @& once more, the
cursor is located at the minimum in the interval we selected, and we find that a
local minimum of —4.5 occurs at x = —2 (Figure 2.16), Repeating these steps

using the appropriate options shows a local maximum of y = 3.5 occurs aix = 0,

and a second local minimum of ¥y = —4.5 occurs at x = 2. Note that y = —4.5 is

also a global minimum.

Figure 2.15

10
=0 R0 Y~BHE+7)
B A

-10 \L'l.}m -10

GLgss?
a=-1

=0
=10

Flgure 2.16

10

Hiniraum
He =z 000004

'y

=45

LY

—10

Now try Exercises 49 through 54

The ideas presented here can be applied to functions of all kinds, including
rational functions, piecewise-defined functions, step functions, and so on, There is a

wide variety of applications in Exercises 57 through 64.
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» CONCEPTS AND VOCABULARY

2-10

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. The graph of a potynomial will cross through the
x-axis at zeroes of factors of degree I, and
off the x-axis at the zeroes from linear

factors of degree 2.

3. If f{x;) > f{x;) forx; < x, for all x in a given
interval, the function is in the interval.

5. Discuss/Explain the following statement and give
an example of the conclusion it makes. “If a
function fis decreasing to the left of (¢, f(c)) and
increasing to the right of (¢, f(c)), then f(¢) is either
a local or a global minimum.”

» DEVELOPING YOUR SKILLS

The following functions are known to be even. Complete
each graph using symmetry,

71 § y 8- ¥

fi-

=5

Determine whether the following functions are even:
J(=k) = flk).
9. f(x)=—T|+3x°+5 10. p(x) = 2x* — 6x + 1

1 1
11. gl(x) =§x4 -5+ 1 12 g(x) = o x|

The following functions are known to be odd. Complete
each graph using symmetry.
13- L ¥ 140 0 .

ﬂm .

L]

2. If f(—x) = f{x) for all x in the domain, we say that
fisan function and symmetric to the
axis. If f(—x) = —f(x), the function is
and symmetric to the .

4. If f(c) = f(x) for all x in a specified interval, we
say that f(e) is a local for this interval.

6. Without referring to notes or textbook, list as many
features/attributes as you can that are related to
analyzing the graph of a function, Include details
on how to locate or determine each attribute.,

Determine whether the following functions are odd:

f(=k) = =f{k).

15. f(x) = 4Vx — x 16. g(x} = %ﬁ — 6x

1
17. p(x) = 3¢ — 5x* + 1 18, ¢(x) = R

Determine whether the following functions are even,
odd, or neither.

19, w(x) = x* — »* 20. g(x) = %xz + 3|

I
21 p(x) = 2Vx — Zx3 22, g(x) = x> + Tx

23. v(x) = x° + 3] 24. f(x) = x* + 7% — 30

Use the graphs given to solve the inequalities indicated.
Write all answers in interval notation.

25.f(r) =2 =3 —x+ 3 f(x) =0
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26. fx) =x* — 2% —dx + 8;f(x) > 0

3

L

5

-5
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32.8(0)=—(x+1°-Lgx)<0

¥

g
A
1
\

Name the interval(s) where the following functions are
increasing, decreasing, or constant. Write answers using
interval notation. Assume all endpoints have integer

values.,

33,y = Vx) 34. y = H{x)
¥
:E IJI _|'I.
i I] 0% -4 I:' P
| |
'J;Ill) .-ﬁ
35, y = f(x) 36. v = g(x)
1) A \ e A
I".
10 L : ;

For Exercises 37 through 40, determine (a) interval(s)
where the function is increasing, decreasing or constant,
and (b) comment on the end-behavior.

37 p(x) = 05(x + 2 38, ¢(x) = -Vx+1
4y A

(0, 4)

I A1)

<3 o |
¥ LI
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For Exercises 41 through 48, determine the following
(answer in interval notation as appropriate): (a) domain
and range of the function; (b) zeroes of the function;

(c) interval(s) where the function is greater than or
equal to zero, or less than or equal to zeroy (d) interval(s)
where the function is increasing, decreasing, or constant;
and (e) location of any local max or min value(s).

41, y = H{x) 2. y = f(x)
4 as e,
4
In’
\ \ III
a0 Ny (5.0
s D 5] (UL 3
f' .I f
L2 1 r
Yo-s |

> WORKING WITH FORMULAS

58, Conic sections—hyperbola: y = 1V4x? - 36

While the conic sections are A
not covered in detail until

later in the course, we've
already developed a number 3
of {ools that will help us
understand these relations
and their graphs. The 5
equation here gives the

“upper branches” of a hyperbola, as shown in the
figure. Find the following by analyzing the equation:
(a) the domain and range; (b) the zeroes of the
relation; (c} interval(s) where y is increasing or
decreasing; (d) whether the relation is even, odd, or
neither, and (e) solve for x in terms of y.

2-12
45. y = Y, 4. y =Y,
I L“\
E 5 5 .\\ 5
7 N\
32 1 N
AT p(x)=(x+3P+1 48. glx) =) — 5|+ 3

Wl W o

1 f 10 x

10 T

Use a graphing calculator to find the maximum and
= minimum values of the following functions. Round

answers to nearest hundredth when necessary.

49, y= %(x]— 50+ 6x) 50. y = g(x3 + 4x% + 3x)
51,y = 0.0016x° — 0.12¢* + 2x
52, y = —0.015° + 0.03x* + 0.25%° — 0.75x°

53 y=xVd4-x 54, y=2Vx+3-2

56. Trigonometric graphs: y = sin{x) and y = cos(x)

The trigonometric functions are also studied at
some future time, but we can apply the same tools
to analyze the graphs of these functions as well.
The graphs of y = sin x and y = cos x are given,
graphed over the interval x € [ —360°, 360°]. Use
them to find (a) the range of the functions;

(b} the zeroes of the functions: (¢) interval(s)
where y is increasing/decreasing; (d) location of
minimum/maximum values; and (¢) whether

each relation is even, odd, or neither.

v ¥
i e, 1 . ) -
/ N\ v= i \ / \¥=vosx f

\ 4

b/

L L .i‘ el
.\ {
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> APPLICATIONS

57,

58,

61.

Catapults and projectiles: Catapults have a long
and interesting history that dates back to ancient
times, when they were used to launch javelins,
rocks, and other projectiles. The diagram given
illustrates the path of the projectile after release,
which follows a parabolic arc. Use the graph to
determine the following:

258838

Heighi (feery

L] LAt} a ™ i %0
Dristanee {fca)

a. State the domain and range of the projectile.
b. What is the maximum height of the projectile?

¢. How far from the catapult did the projectile
reach its maximum height?

d. Did the projectile clear the castle wall, which
was 40 ft high and 210 ft away?

€. On what interval was the height of the
projectile increasing?

f. On what interval was the height of the
projectile decreasing?

Profit and loss: The profit of
DeBartole Construction Inc.
i8 illustrated by the graph
shown. Use the graph to
estimate the point(s) or the
interval(s) for which the profit P was:

P (millicos of dollarsy

£ (years since 19%0)

a. increasing
b. decreasing

Sectlon 2.1 Analyzing the Graph of a Function 117

¢. constant

d. amaximum
€. a minimum
f, positive

g. negative

h. zero

59. Functions and rational exponents: The graph of

f(x) = x* — 1 is shown. Use the graph to find:
a. domain and range of the function
b. zeroes of the function
¢. intervai(s) where f(x) = O or f(x) < 0
d. interval(s) where f(x) is increasing, decreasing,

or constant
e. location of any max or min value(s)
Exerclse 59 Exerclse 60
b : A &7 i
T O Y Y T , /
e \(=3.0) LW
: : 4
© -1y L -5 |.!_I,. l:.’ 5 x
VS WAV,
-5 | S !

60. Analyzing a graph: Given 2(x) = |x* — 4| — 5,

whose graph is shown, use the graph to find:
a. domain and range of the function
b. zeroes of the function
¢. interval(s) where A(x) = 0 ot h(x) < 0

d. interval(s) where fix) is increasing, decreasing,
or constant

e. location of any max or min value(s)

Analyzing interest rates: The graph shown approximates the average annual interest rates / on 30-yr fixed mortgages,
rounded to the nearest §%. Use the graph to estimate the following (write all answers in intetval notation).

a. domain and range

¢. location of any global maximum or d.

minimum values
Source: 2009 Statisticat Abstract of the United States, Table 1157

16
14

2 B

Mortgage rate

(=T T - - )

b. interval(s) where /(1) is increasing, decreasing, or constant

the one-year period with the greatest rate of increase and
the one-year period with the greatest rate of decrease

\,.___—-'—\

3

83 84 85 36 87 88 89 90 91 92 93 94 95 96 97 98 99 Q0 OL 02 O3 04 05 O6 07 08 09

Year (1983 — 83)
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62. Analyzing the surplus S: The following graph approximates the federal surplus S of the United States. Use the
graph to estimate the following, Write answers in interval notation and estimate all surplus values to the nearest
$10 billion.

a. the domain and range
b, interval(s) where S(r) is increasing, decreasing, or constant
¢. the location of any global maximum and minimum values

d. the one-year period with the greatest rate of increase, and the one-year period with the greatest rate of decrease
Source: 2009 Statistical Abstract of e United States, Table 451

400

" AN
0

-200 w

—400

!

~ 60N} =i
]3(! 81 82 83 84 85 86 B7 8% 8% D0 91 92 63 94 95 96 97 93 99 100101 102 103 104 105 106 107 103

S$(): Federal Surplus (in billions)

Year {1980 — 80)

63. Constructing a graph: Draw a continuous function 64. Constructing a graph: Draw a continuous function
fthat has the following characteristics, then state g that has the following characteristics, then state
the zeroes and the location of all maximum and the zeroes and the location of all maximum and
minimum values. [Hint: Write them as (¢, f()).] minimum values, [Hint: Write them as (¢, g(c)).]

a. Domain: x € (—10, 00) a. Domain: x € (—00, 8]
Range: y € (—6, o0} Range: y € [ 6, )

b. f(0) = 0;f(4) =0 b. g(0) = 4.5:g(6) =0

c. fix)T forx € (=10, —6) U (—2,2) U (4, o0) c. g(x) forx € (—6,3) U (6, 8)
Fol forx € (-6, ~2) U (2, 4) g(x} for x € (o0, —6) U (3, 6)

d. f{x) = 0forx €[—8, —4] U [0, c0) d. g(x) = 0forx € (—o0, -9 U [-3, 8]
flx) < Oforx € (—co, —8) U (—4,0) glx) < Oforx€ (-9, -3)

» EXTENDING THE CONCEPT
m 65. Does the function shown have a maximum value? Does it have a minimum value? Exercise 65

¥
5

Discuss/explain/fjustify why or why not.

66. The graph drawn here depicts a 400-m race between a mother and her daughter. Analyze
the graph to answer questions (a) through (f).

a. Who wins the race, the mother or daughter? f £
b. By approximately how many meters? NGesgETERE
¢ By approximately how many seconds? Exerclse 66 d

d. Who was leading at t = 40 seconds? co0 | Mother === Daughter = ===

€. During the race, how many seconds was
the daughter in the lead?

f. During the race, how many seconds was
the mother in the lead?

g

Distance (meters)
g B

80

Time (seconds)
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67. The graph drawn here depicts the last 75 sec of the competition between Ian Thorpe (Australia) and
Massimiliano Rosolino (Italy) in the men’s 400-m freestyle at the 2000 Olympics, where a new Olympic
record was set.

a. Who was in the lead at 180 sec? 210 sec?

b. In the last S50 m, how many times were they tied, and when did the ties occur?
¢. About how many seconds did Rosolino have the lead?

d. Which swimmer won the race?

e. By approximately how many seconds?

f. Use the graph to approximate the new Olympic record set in the year 2000.

400

Distance (meters)
g &

7]
S

150 155 160 165 170 175 180 185 190 195 200 205 210 245 220 225
Time (seconds)

69. Verify that A(x) = * is an even function, by first
rewriting % as h(x) = (¥).

68. Draw the graph of a general function f(x) that has a
local maximum at (a, f(a)) and a local minimum at

(b, f(b)) but with f(a) < f(B).

» MAINTAINING YOUR SKILLS

70. (Appendix A.4) Solve the given quadratic equation
by factoring: x~ — 8x — 20 = 0,

72, (1.4) Write the equation of the line shown, in the
formy = mx + b.

71. (AppentixA.5) Find the (a) sum and (b} product of the
3 3
d 2

—x.

rational expressions an
P x+2

73. (AppendlxA.2) Find the surface area and volume of the
cylinder shown (SA = 2mr? + mr?h, V = mr2h).




v The Toolbox Functions and Transformations

LEARNING OBJECTIVES

In Section 2.2 you will see
how we can:

[ A. Identify basic
characteristics of the
toolbox functions

[ B. Apply vertical/horizontal
shifts of a basic graph

[ C. Apply vertical/horizontal
reflections of a basic
graph

(O D. Apply vertical stretches
and compressions of a
basic graph

O E. Apply transformations on
a general function f(x)

Many applications of mathematics require that we select a function known to fit the
context, or build a function mode! from the information supplied. So far we’ve looked
at linear functions. Here we’ll introduce the absolute value, squaring, square root,
cubing, and cube root functions. Together these are the six toolbox functions, so called
because they give us a variety of “tools” to model the real world (see Section 2.6). In the
same way a study of arithmetic depends heavily on the multiplication table, a study of
algebra and mathematical modeling depends (in large part) on a solid working knowl-
edge of these functions. More will be said about each function in later sections,

A. The Toolbox Functions

While we can accurately graph a line using only two points, most functions require
more points to show all of the graph’s important features. However, our work is greatly
simplified in that each function belongs to a function family, in which all graphs from
a given family share the characteristics of one basic graph, called the parent function,
This means the number of points required for graphing will quickly decrease as we
start anticipating what the graph of a given function should look like. The parent func-
tions and their identifying characteristics are summarized here.

The Toolbox Functions
Identity function Absolute value function
,».1 ¥ ‘J y
x  f=x A 4 x  fy=x N ’
-3 -3 /‘ -3 | 3 \.\ /"
Al " Vel ST
-2 -2 o ~2 2 '
-1 -1 s / 5 X -1 1 s § X
0 0 / 0 0
] 1 J 1 L
2| 2 P I5 2 2 3
3| 3 3 3

Domain: x € (—oo, oo}, Range; y € (—o0, 00)
Symmetry: odd
Increasing: x € (—o0, 00}
End-behavior: dowa on the left/up on the right

Domain: x € {—o0, o), Range: y € [0, oo}
Synumetry; even
Decreasing: x € {—oo, 0); Increasing: x € (0, 00)
End-behavior: up on the left/up on the right
Vertex at (0, ()

Squaring function Square root function
5 Y :
_ f(x)=x2 flx). = a2 2 f{.\‘}=\/; : flx) T
-3 9 j -2 -
-2 4 X =] = .f*""r
-1 i 3 e 0 0 =% P
0 0 1 1
[ 1 2 =~1.41
2 4 A 3 =~1.73 Ly
3 9 4 2

120

Domain; x € (—oo, oo}, Range: y € [0, o0)
Symmetry: even
Decreasing: x € (—oo, 0); [ncreasing: x € (0, o0)
End-behavior: up on the left/up on the right

Domain: x € [0, o), Range: y € [0, o0}
Symmetry: neither even nor odd
Increasing: x € (0, c0)
End-behavior; up on the right
Vertex at (0, 0) Initial point at ({, 0}

2-18



2-17 Sectlon 2,2 The Toolbox Functlons and Transformations 121
Cubing function Cube root function
y y
10 <
¥ foy=x § x =9
-3 | -27 [ fi -27 -3
/ -
-2 -8 -8 -2 -
]
-1 -1 5 P et -1 -1 10 y nx
f F
0 0 / 0 0 T
1 1 ‘ 1 1
2 8 J/ o 8 2 f
3 27 27 3
Domain; ¥ € (—00, oc), Range: y € {—o0, 00} Domain; x € {—o0, 03), Range: v € {—oco, 00)
Symmetry: odd Symmetry: odd
Increasing; x € {—oo, 00) Increasing: x € (—o0, 00)
End-behavior: down on the left/up on the right End-behavior: down on the left/up on the right
Point of inflection at (0, O) Point of inflection at (0, 0
In applications of the toolbox functions, the parent graph may be “morphed”
and/or shifted from its original position, yet the graph will still retain its basic shape
and features. The result is called a transformation of the parent graph.
EXAMPLE 1 Identifying the Characteristics of a Transformed Graph

Solution

& A. You've just seen how
we can identify basic
characteristics of the
toolbox functions

The graph of f(x) = x* — 2x — 3 is given. ¥
Use the graph to identify cach of the features e i
or characteristics indicated. \ /

a, function family \
b. domain and range \ /

¢. vertex 5 \ [ 5x
d. max or min value(s) \ /
e, intervals where fis increasing or decreasing \
f. end-behavior 4
g. x- and y-intercept(s)

a, The graph is a parabola, from the squaring function family.

b. domain: x € (—o0, c0); range: y € [—4, 00) |
¢ vertex: (1, —4) |
d. minimum value y = —4 at (1, —4) |
e, decreasing: x € (—o0, 1), increasing: x € (1, oo) ‘
f. end-behavior: up/up |
g. y-intercept: (0, —3); x-intercepts: (—1, 0) and (3, 0)

Now try Exercises 7 through 34

Note that for Example 1(f), we can algebraically verify the x-intercepts by substi-
tuting 0 for f(x) and solving the equation by factoring. This gives 0 = (x + 1)(x — 3),
with solutions x = —1 and x = 3. It’s also worth noting that while the parabola is no
longer symmetric to the y-axis, it is symmetric to the vertical line x = 1. This line is
called the axis of symmetry for the parabola, and for a vertical parabola, it will always
be a vertical line that goes through the vertex,
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B. Vertical and Horizontal Shifts

As we study specific transformations of a graph, try to develop a giobal view as the
transformations can be applied to any function. When these are applied to the toolbox
functions, we rely on characteristic features of the parent function lo assist in complet-
ing the transformed graph.

Vertical Translations

We’ll first investigate vertical translations or vertical shifts of the toolbox functions,
using the absolute value function to illustrate,

EXAMPLE 2 Graphing Vertical Translations

Construct a table of values for f(x) = x|, g(x) = x| + 1, and A(x) = [x| — 3 and
graph the functions on the same coordinate grid. Then discuss what you observe.

Solution A table of values for all three functions is given, with the corresponding graphs
shown in the figure.
x | pw=lel | g0 =[xl +1 S
E | 2 | . | (=3 \;‘I\‘t\._ A 4
—2 | 2 ‘ 3 | T r 3 \..'\__‘ J“‘,.' Lo
-1 | 1| 2 (=3, 00 ' v
o | o | 1IN 4 y-x
1 |1 2 »
2 2 3
3 | 3 4 ~

Note that outputs of g(x) are one more than the outputs of f(x), and that each point
on the graph of f'has been shifted upward 7 unit to form the graph of g. Similarly,
each point on the graph of f has been shifted downward 3 units to form the graph of
h, since h(x) = f(x) — 3.

Now try Exercises 35 through 42

We describe the transformations in Example 2 as a vertical shift or vertical trans-
lation of a basic graph. The graph of g is the graph of f shifted up I unit, and the graph
of %, is the graph of f shifted down 3 units. In general, we have the following:

Vertical Translations of a Baslic Graph

Given & > 0 and any function whose graph is determined by y = f(x),
1. The graph of y = f(x) + k is the graph of f(x) shifted upward k units.
2. The graph of y = f(x) — k is the graph of f(x) shifted downward k units,

Graphing calculators are wonderful tools for Flgure 2.17
exploring graphical transformations. To emphasize [Fiotf Fiotz Fiel3
that a given graph is being shifted vertically as in  [\AyBZJCX D
Example 2, try entering VX as Y, on the v screen, [nY2BY {1 +2
then Y, =Y, + 2and Y; = Y, — 3 (Figure 2.17 — [“Y':BY1-3
recall the Y-variables are accessed using @@ ® “"'"""lf
(Y-VARS) &), Using the Y-variables in this wily ef- :$E:
ables us to study identical transformations on a variety W =
of graphs, simply by changing the function in Y.
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EXAMPLE 3

Solution

Section 2.2 The Toolbox Functions and Transformations 123

Using a window size of x € [—5,5] and Figure 2.18
y € [—5,5] for the cube root function, pro- 5
duces the graphs shown in Figure 2.18, which fa=yivz ~Yy
demonsirate the cube root graph has been
shifted upward 2 units (Y,), and downward

3 units (Y3). -3 — 5
Try this exploration again using e :,_.e—f-‘_ﬂ ™Y,
Y, = VX. A
wsg = V=g
-5

Horlzontal Translatlons

The graph of a parent function can also be shifted left or right. This happens when we
alter the inputs to the basic function, as opposed to adding or subtracting something to
the function itself. For Y, = x* + 2 note that we first square inputs, then add 2,
which results in a vertical shift. For Y, = (x + 2)°, we add 2 to x prior to squaring
and since the input values are affected, we might anticipate the graph will shift along
the x-axis—horizontally.

Graphing Horlzontal Transtations

Construct a table of values for f(x) = x> and g{x) = (x + 2)7, then graph the
functions on the same grid and discuss what you observe.

Both fand g belong to the quadratic family and their graphs are parabolas. A table
of values is shown along with the corresponding graphs.

X f(x)=x2 *l UL)’j (3. 9)
_ L\ e
) 4 | i \ o/ Ifix) =
5o, 4
-1 ‘ l ' \'-ﬁ 4glm' 2 2, 4)
0| o . \ /
] ‘ | | : \ 5 |
) 4 | [ Mg/ I
i § -4 —3 =1 L 134 52X
3| 9 - |

|
It is apparent the graphs of g and f are identical, but the graph of g has been shifted
horizontally 2 units left.

Now try Exercises 43 through 46

We describe the transformation in Example 3 as a horizontal shift or horizontal
translation of a basic graph. The graph of g is the graph of f, shifted 2 units to the left.
Once again it seems reasonable that since input values were altered, the shift must be
horizontal rather than vertical. From this example, we also learn the direction of the
shift is opposite the sign: y = (x + 2)% is 2 units to the lefi of y = 2. Although it may
seem counterintuitive, the shift opposite the sign can be “seen” by locating the new
x-intercept, which in this case is also the vertex. Substituting O for y gives
0 = (x + 2)? withx = —2, as shown in the graph. In general, we have

Horizontal Translatlons of a Basic Graph

Given i > 0 and any function whose graph is determined by y = f{x),
1. The graph of y = f(x + k) is the graph of f(x) shifted to the left k units.
2. The graph of y = f(x — &) is the graph of f(x) shifted to the right h units.
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Figure 2.19 To explore horizontal translations on a Figure 2.20
Flotl Flotz Floks graphing calculator, we input a basic function in 10 Y,
W HRAT Y, and indicate how we want the inputs altered VE=GieE) | II
“MzBV1 (X+5) in Y, and Y;. Here we'll enter X as Y, on the ]
SN:EY 1 K-7D % screen, then Y, =Y, (X+5) and JI
%3‘13 Y; = Y (X — 7) (Figure 2.19). Note how this 10 e LS i 10
:?E; duplicates the definition and notation for hori- ! ‘|{r
WMas zontal shifts in the orange box. Based on what !
we saw in Example 3, we expect the graph of H=-E V=0 }
y = x° will first be shifted 5 units left (Y,), then -10
7 units right (Y3). This in confirmed in Figure 2.20,
Try this exploration again using Y, = abs{X).
EXAMPLE_4 Graphing Horlzontal Traﬁsl_ations i |
Sketch the graphs of g(x) = Jx ~ 2| and #(x) = Vx + 3 using a horizontal shift of
the parent function and a few characteristic points (not a table of values).
Solution The graph of g(x) = |x — 2| (Figure 2.21) is the absolute value function shifted !

& B. You've just seen how
we can perform vertical/
horizontal shifts of a basic
graph

EXAMPLE 5

Solution

2 units to the right (shift the vertex and two other points from y = |x]). The graph
of h(x) = Vx + 3 (Figure 2.22) is a square root function, shifted 3 units to the left
(shift the initial point and one or two points from y = V).

Figure 2.21 Flgure 2,22
\ I 1 : v ¢
Ny Iﬁl‘,'- 3 // Pl s
b NI ¥ &
b/l L A15,.3) (6, 3)
N o / el
& N7 / (1:2) _—
L L .
i N T
5 Vertex @0 5 - A
4. —
4 (-3, 0} 5 X

Now try Exercises 47 through 50

C. Vertical and Horizontal Reflections

The next transformation we investigate is called a vertical reflection, in which we
compare the function Y, = f(x) with the negative of the function: Y, = —f(x).

Vertlcal Reflections

Graphing Vertical Reflectlons II
Construct a table of values for Y, = x*and Y, = —x?, then graph the functions on |

the same grid and discuss what you observe.
|

A table of values is given for both functions, along with the corresponding graphs.
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Figure 2.23

Flotl Floke Finkz
B3 (R)
Vel -V
wWa=
“My=
.""'le=
“Mg=
shin=

EXAMPLE 6

Solution

Section 2.2 The Toolbox Functions and Transformatlons 125

d |
| i |
x | hWw= ¥ Y, = =it Yi=x" (2,4 ‘
_n 4 -4 |
—-1 1 -1
0 0 0 5111/L N2 345X
1 1 -1 / \ !
2 4 -4 Y Hf Y@ =4
5 |

As you might have anticipated, the outputs for fand g differ only in sign. Each /
output is a reflection of the other, being an equal distance from the x-axisbuton |
opposite sides. }

i = — —— — e —

Now try Exercises 51 and 52

The vertical reflection in Example 5 is called a reflection across the x-axis.
In general,

Vertlcal Reflectlons of a Basic Graph

For any function y = f(x), the graph of y = —f(x)
is the graph of f(x) reflected across the x-axis.

To view vertical reflections on a graphing cal- Figure 2.24
culator, we simply define Y, = —Y, as seen here 3
using VX as Y, (Figure 2.23). As in Section 1.5, ="
we can have the calculator graph Y, using a
bolder line, to easily distinguish between the
original graph and its reflection (Figure 2.24). To
aid in the viewing, we have set a window size of

€ [—5,5]andy € [-3,3].

Try this exploration again using Y, = X* — 4. e ¥=1

-3

Horlzontal Reflections
It’s also possible for a graph to be reflected horizontally across the y-axis. Just as we

noted that f(x) versus —f(x) resulted in a vertical reflection, f(x) versus f{—x) results in
a horizontal reflection.

Graphing a Horizontal Reflection

Construct a table of values for f(x) = Vx and g(x) = V—x, then graph the
functions on the same coordinate grid and discuss what you observe. h

A table of values is given here, along with the corresponding graphs. |

X | fo=vVax | gy = V—x

—4 not real 2 TS ‘
glv) = Y "\ |
-2 not real \f’i 2 | 4] £ N |

i e B

not real

not read -2

-1 not real
|
|

0
1
2 w@=141
4 | 2

not real
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& C. You've just seen how we
can apply vertical/horizontal
reflections of a basic graph

EXAMPLE 7

Solution

WORTHY OF NOTE

In a study of trigonomstry, you'll
find that & basic graph can also

be stretched or compressed
horizontally, a phanomenon known
as fraquency variations.

The graph of g is the same as the graph of £, but it has been reflected across the
y-axis. A study of the domain shows why — f represents a real number only for
nonnegative inputs, so its graph occurs to the right of the y-axis, while g represents |
a real number for nonpositive inputs, so its graph occurs to the left.

Now try Exercises 53 and 54

The transformation in Example 6 is called a horizontal reflection of a basic
graph. In general,

Horizontal Reflectlons of a Basic Graph

For any function y = f(x), the graph of y = f(~x)
is the graph of f(x) reflected across the y-axis.

D. Vertically Stretching/Compressing a Basic Graph

As the words “stretching” and “compressing™ imply, the graph of a basic function can
also become elongated or flattened after certain transformations are applied. However,
even these transformations preserve the key characteristics of the graph.

Stretching and Compressing a Basic Graph

Construct a table of values for f(x) = x%, g(x) = 327, and k(x) = 4x?, then graph
the functions on the same grid and discuss what you observe.

A table of values is given for all three functions, along with the corresponding
graphs,

x if(.t)=.\:2 | 20 =37 '
-3 ‘ 9 | 2 |
-2 4 2|
-1 3
0 0 0 |
1] 1 3|
2 4 (2 \ i
3 9 27 ‘

The outputs of g are triple those of f, making these outputs farther from the x-axis |
and stretching g upward (making the graph more narrow). The outputs of & are '
one-third those of f, and the graph of 4 is compressed downward, with its outputs
closer to the x-axis (making the graph wider).

Now try Exercises 55 through 62

The transformations in Example 7 are called vertical stretches or compressions
of a basic graph. Notice that while the outputs are increased or decreased by a constant
factor (making the graph appear more narrow or more wide), the domain of the func-
tion remains unchanged. In general,
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Stretches and Compressions of a Baslc Graph
For any function y = f(x), the graph of y = af(x) is
1. the graph of f(x) stretched vertically if |a] > 1,
2. the graph of f(x) compressed vertically if 0 < |g] < 1.
Figure 2.25 To use a graphing calculator in a study of Figure 2.26
Flotl Flotz Flots stretches and compressions, we simply define Y,
SYiET M and Y5 as constant multiples of Y, (Figure 2.25).
“WaB2Y4 As seen in Example 7, if |a] > 1 the graph will be
YR8, 3V stretched vertically, if 0 < a| << 1, the graph will
:3;3 be vertically compressed. This is further illus-
"\'T'E; trated here using Y, = VX, with Y, = 2Y, and
Maz= Y; = 0.5Y,. Since the domain of y = Vx is re-
stricted to nonnegative values, a window size of

x €[0,10] and y € [ —1, 7] was used (Figure 2.26).

D. You' . . .
o ou've just seen how we Try this exploration again using Y, = abs(X) — 4.

can apply vertical stretches and
compressions of a basic graph
E. Transformations of a General Function

If more than one transformation is applied to a basic graph, it’s helpful to use the fol-
lowing sequence for graphing the new function.
General Transformations of a Basic Graph

Given a function y = f(x), the graph of y = af{x = h) * k can be obtained by
applying the following sequence of transformations:

1. horizontal shifts 2. reflections 3. stretches/compressions 4. vertical shifts

We generally use a few characteristic points to track the transformations involved,
then draw the transformed graph through the new location of these points.

EXAMPLE 8

Graphing Functions Using Transformations
Use transformations of a parent function to sketch the graphs of
a gx) = —(x +2)*+3 b. A(x) =2Vx -2 — I
Solution a. The graph of g is a parabola, shifted left 2 units, reflected across the x-axis, and shifted up 3 units.
This sequence of transformations is shown in Figures 2.27 through 2.29. Note that since the
graph has been shifted 2 units left and 3 units up, the vertex of the parabola has likewise shifted |
from (0, 0) to (—2, 3).
Figure 2.27 Figure 2.28 Figure 2.29 '
¥ y Y gy £y '
S Pt : ;
( -4,4]‘5\ I # (—2,3)
\ \ /! /“\,\ |
\ \/ ! /
\, po I (—2,0) / \ |
5 (=2,0 x . AN -5 4 | PIRTNIRE ) '
Vertex / \ f (—4—1) |
/ \ \
-4, -4 b (0, —4) \
. ( 1§ . A / L

Shifted Jeft 2 units

Reflected across the x-axis

Shifted up 3 units
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b, The graph of 4 is a cube root function, shifted right 2, stretched by a factor of 2, then shifted
down 1. This sequence is shown in Figures 2.30 through 2.32 and illustrate how the inflection
point has shifted from (0, 0) to (2, —1).

Flgure 2.30 Figure 2.31 Figure 2.32
¥ ¥ Ld
5 § 5
------ P = AG.2) i
) @0y /76,0
= Jo.m K 4 I L : i'(2. —1) &%
A Inflection ”a/ ',J'
() —1) 11, =2) '
- T (1. —3)
5 -5 = 5 |
Shifted right 2 Stretched by a factor of 2 Shifted down 1 |

WORTHY OF NOTE

Since the shape of the initial graph
doas not change when translations
or reflections are applled, these are
called rigid transformations.,
Stretches and compressions of a
basic graph are called norwigid
transformations, as the graph is
distended in some way.

It’s important to note that the transformations can actually be applied to any
JSunction, even those that are new and unfamiliar, Consider the following pattern:

Parent Function Transformation of Parent Function
quadratic: y = x° y=—-2x-37+1
absolute value: y = |x| y=-=2x-3]+1
cube root: y = V = —2Vx -3+ 1
general: y = f(x) y==-2f(x-3)+1

In each case, the transformation involves a horizontal shift 3 units right, a vertical
reflection, a vertical stretch, and a vertical shift up 1. Since the shifts are the same
regardless of the initial function, we can generalize the results to any function f(x).

General Function
y = f(x)

Transformed Function
y=af(x = h) * k

horizontal sHift i shifl
hunits, opposite  k units, same
direction of sign  direction as sign

il rElections

vertical stretches and compressions

Also bear in mind that the graph will be reflected across the y-axis (horizontally)
if x is replaced with —x. This process is illustrated in Example ¢ for selected trans-
formations. Remember—if the graph of a function is shifted, the individual points
on the graph are likewise shifted.
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EXAMPLE 9

Solution

Section 2.2 The Toolbox Functlons and Transformatlons

Graphing Transformations of a General Function

Given the graph of £(x) shown in Figure 2.33, graph g(x) = ~f(x + 1) — 2.

For g, the graph of fis (1) shifted horizontally 1 unit left (Figure 2.34),
(2) reflected across the x-axis (Figure 2.35), and (3) shifted vertically 2 units down

(Figure 2.36). The final result is that in Figure 2.36.

Flgure 2.33

Figure 2.34
¥

Now try Exercises 93 through 96

129

As noted in Example 9, these shifts and transformation are often combined —
particularly when the toolbox functions are used as real-world models (Section 2.6).
On a graphing calculator we again define Y, as needed, then define Y, as any desired
combination of shifts, stretches, and/or reflections. For Y, = X7, we’ll define Y, as
—2Y (X + 5) + 3 (Figure 2.37), and expect that the graph of Y, will be that of Y,
shifted left 5 units, reflected across the x-axis, stretched vertically, and shifted up
three units, This shows the new vertex should be at (—5, 3), which is confirmed in
Figure 2.38 along with the other transformations.

Figure 2,37

Flakd

M=
“y=
sWe=
Weg=
wWe=

SWiEKE
WaB -2Y1 (H+5)+3

Flate Floks

—10

Try this exploration again using Y, = abs(X).

Figure 2.38
10

st [ R L

AM/

Be-E =3

=10

| 10
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Using the general equation y = af(x * k) * k, we can identify the vertex, initial
point, or inflection point of any toolbox function and sketch its graph, Given the graph
of a toolbox function, we can likewise identify these points and reconstruct its equa-
tion. We first identify the function family and the location (4, k) of any characteristic
point. By selecting one other point (x, y) on the graph, we then use the general equa-
tion as a formula (substituting 4, k, and the x- and y-values of the second point) to solve
for a and complete the equation.

EXAMPLE 10 Writing the Equation of a Function Given Its Graph
Find the equation of the function f(x) shown in the figure. '

Solution The function fbelongs to the absolute value family. The y :
vertex (A, &) is at (1, 2). For an additional point, choose 5 |
the x-intercept (—3, 0) and work as follows: |

y=ax—H+k general equation (funclion is ()9 Paag '
shifted right and up) /,--" T
0=al(—3) — 1| + 2 substitule 1 for hand 2 for &, 53 | o |
substitule =3 for xand O for y |
O0=4a+2 simplify
—2=da subtract 2 ‘
1 2
— =g
2

E/ E. You've just seen how . |
we can apply transformations ~ The equation for fisy = —zlxr — 1| + 2.

on a general function f{x} — -
Now try Exercises 97 through 102

> CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase, Carefully reread the section if needed.

1. After a vertical , points on the graph are 2. Transformations that change only the location of a
farther from the x-axis, After a vertical | graph and not its shape or form, include
points on the graph are closer to the x-axis. and

3. The vertex of A(x) = 3(x + 5)> — 9is at 4. The inflection point of f(x) = —2(x — 4> + 11is

and the graph opens at and the end-behavior is :

5. Given the graph of a general function f(x), discuss/ 6. Discuss/Explain why the shift of f(x) = > + 3isa
explain how the graph of F(x) = —2f(x + 1) - 3 vertical shift of 3 units in the positive direction, while
can be obtained. If (0, 5), (6, 7), and (=9, —4) are the shift of g(x) = (x + 3)?is a horizontal shift
on the graph of f, where do they end up on the 3 units in the negative direction, Include several

graph of F? examples along with a table of values for each.
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» DEVELOPING YOUR SKILLS

By carefully inspecting each graph given, (a) identify the
function family; (b) describe or identify the end-behavior,
vertex, intervals where the function is increasing or
decreasing, maximum or minimum value(s) and x- and
y-intercepts; and (c) determine the domain and range.
Assume required features have integer values,

7. f(x) = x* + 4x 8 gx) = —%* + 2x
A 42
A f
5\ 5 x 3 5x
9.p(x)=x—-2x—3 10. glx)= —x"+2x +8

A "1 > i "‘T

\ . _ Li,
—§ [ §x 0 | \ LL

L |
-5 Lio f

M fr)=22—4r—5 12 gx)=x*+6x+5

¥ ¥
10 il
A A i

L
| | '

| J e |
I | | 1 x 1 1%

| 10

For each graph given, (a) identify the function family;
{b) describe or identify the end-behavior, initial point,
intervals where the function is increasing or decreasing,
and x- and y-intercepts; and (c) determine the domain
and range. Assume required features have integer values,

13, p(x) =2Vx + 4 -2 14, g(x)=-2Vx+4+2

¥ gy

5
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15, r(x) = =3V4A —x+ 316, flx) =2Vx+1—4

y .V
< 5

A 3 3 i
17. g(x) =2

o

For each graph given, (a) identify the function family;
(b) deseribe or identify the end-behavior, vertex,
intervals where the function is increasing or decreasing,
maximum or minimum value(s) and x- and y-intercepts;
and (¢) determine the domain and range. Assume
required features have integer values.

19.px)=2x+ 1 -4 20. g(x) = -3x — 2| +3

¥ Y
5 4 5

\/ '
5 ¥

21 r(x) = =2 + 1|+ 6 22, f(x) =3 —2 — 6

¥ ¥
Al 4

4 1 & v

23, g{x) = =3yl + 6 24, h(x) = 2x + 1]

o’ W L

\
\
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For each graph given, (a) identify the function family;
(b) describe or identify the end-behavior, inflection
point, and x- and y-intercepts; and (¢) determine the
domain and range. Assume required features have
integer values, Be sure to note the scaling of each axis.

25, f(x) = —(x — 1) 26. g(x)=(x+ 1
[ T !
27, hix) = ¥ + 1 28. p(x) = ~Vx + 1
JI
29. glx) = Vx—-1—-1 30 rx)=—-Vx+1-1

L} \

-] f 5 x 5 I: | 5x

5 -8

For Exercises 31-34, identify and state the characteristic
features of each graph, including (as applicable) the
function family, end-behavior, vertex, axis of symmetry,
point of inflection, initlal point, maximum and minimum
value(s), x- and y-intercepts, and the domain and range.

31- ¥ 320 ¥

L] 5

-5 Ly

33. ¥

w
|
n

&)
_t

el

&
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Use a graphing calculator to graph the functions given

= in the same window. Comment on what you observe.

IS fx)=Vr gx)=Vx+2, hx)=Vx-3
36 f(x) = Va, g(x)=Va—3, ax)=Va+4
3. pxy=M, gxy=W-5 rix)=W+2
B.px)=x, gx)=x-7 rx)=x+13

Sketch each graph by hand using transformations of a
parent function (without a table of values).

39, f(x) =x" -2 40, g(x) =vVx-—4
41 hx) =%+ 3 42, =[x ~3

Use a graphing calculator to graph the functions given
in the same window. Comment on what you observe.

43, p(x) = glx) = (x + 5)2
fix) = glx) =

48, Y, = |x| Y, =jx— 4|

46. h(x) = x>, H(x) = (x — 4)°

Sketch each graph by hand using transformations of a
parent function (without a table of values).

47, p(x) = (x — 3)° 48. g(x) = Vx — 1
49. h(x) = x + 3| 50. f(x) = Vx + 2
51 g(x) = —|x| 52. j(x) = -

53. f(x) = V—x 54, g(x) = (-x)°

Use a graphing calculator to graph the functions given
in the same window. Comment on what you observe.

55, p(x) = 2%, g(x) =34 r(x)=1

56. fx) = V=x, g(x) = 4V—x, h(x)=iV==x
57. Y, = |x| Yy =3)k|, Ys =3l

58. u(x) = 2%, v(x) =8 w(x) =&

Sketch each graph by hand using transformations of a
parent function (without a table of values).

59. f(x) = 4V 60, g(x) = —2Jx|

61. p(x) =4 62. g(x) = 3Vx
Use the characteristics of each function family to match
a given function to its corresponding graph. The graphs

are not scaled—make your selection based on a careful
comparison.

63. f(x) =1 64, flx) =3 + 2
65. f(x) = —(x =37 +2 66. fx) = —-Vx-1-1
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Graph each function using shifts of a parent function
and a few characteristic points. Clearly state and indicate
the transformations used and ldentify the location of all
vertices, Initial points, and/or Inflectlon points,

8. f(x)=Vx+2-1 76 gx)=vVx—-3+2

67 f(x) =|x + 4 + 1 68. f(x) = ~Vx+ 6

69 fx)=~Vx+6—-1 70, fx) =x+1
L) =(x-4>~-3 M fx=x—-2 -5
BofR=Vx+3-1 74 fx)=~(x+37%+5

a b. ) 77 h(x) = ~(x + 3> -2 78, H(x)=—(x~2*+5
e 9. p(x)=(r+3°—1 80, gl)=(x—27°+1
, | - —%; 8Ls(x)=Vx+1-2 8 f()=Vz-3+1
' ' 8. f(x)=—-[x+3 -2 84 glx)=-p—4-2
88 Ax)= —-2(x + 1> ~ 386, Hix) = Y + 2| — 3
ol . d : 87.p(x) = ~dx +2° — 188, glx) =4¥xF T + 2
89, u(x)= ~2V=x—1+390. y(x)=3vV~x+2 -1
. “’l_ < _ . O rx)=Hx-3°+1 90Hx)=-2x-3+4
| ; Apply the transformations Indicated for the graph of the
general functions glven,
€. y f. v 93. A R 94, i
"‘-._ p . -l.,-lnl 1: = ( .|_,1|f:
/ [ |.'.:\" — e ;"
- Ch-n | e
g y o h.
/ a f(x — 2) a, g(x) —2
b, —f(x) — 3 b, —g(x) + 3
x X e df(x+ 1) ¢ 2g(x + 1)
[ d. f(—x) + | d. 3g(x — 1) + 2
. 95 96, A2
i i 1
] v i 7 : e AR .'r >
4 1 i.f[ " .IL ‘l 414 ! Wi, =3
L Lim ; -2 a hix) + 3 a. H(x — 3)
1 il ) ( b. —h(x — 2) b, —H(x) + 1
r 4 ¢ =2)—1 ¢ 2H(x — 3)
- ¥ d. 2h(x) + 5 do $H(x —2) + 1
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Use the graph given and the points indicated to determine the equation of the function shown using the general form
y=af(x £ h) £k

97.

100,

A 98-

(2,0}

y 99.

{6, 4.5)

v

[
o, 4
o

101.

=45 S

a0,

-4)

A—3.0) 1 L

4 102. A

> WORKING WITH FORMULAS

a 103.

Volume of a sphere: V() = $mr®

The volume of a sphere is given by the function
shown, where V() is the volume in cubic units and
r is the radius. Note this function belongs to the
cubic family of functions. (a) Approximate the
value of 37 to one decimal place, then graph the
function on the interval [0, 3]. (b) From your
graph, estimate the volume of a sphere with radius
2.5 in., then compute the actual volume. Are the
results close? (c) For V = 3, solve for 7 in terms
of V.

> APPLICATIONS

105.

106.

Gravity, distance, time: After being released, the
time it takes an object to fall x ft is given by the
function T(x) = ¥V, where T(x) is in seconds.
(a) Describe the transformation applied to obtain
the graph of T from the graph of y = V5, then
sketch the graph of 7 for x € [0, 100]. (b) How
long would it take an object to hit the ground if it
were dropped from a height of 81 ft?

Stopping distance: In certain weather conditions,
accident investigators will use the function

¥(x) = 4.9/ to estimate the speed of a car (in
miles per hour) that has been involved in an
accident, based on the length of the skid marks x
(in feet}. (a) Describe the transformation applied to

- R (4,

104,

107.

Fluid motion: V(h) = —4VA + 20

Suppose the velocity of a fluid flowing from an
open tank (no top) through an opening in its side is
given by the function shown, where V(h) is the
velocity of the fluid (in feet per second) at water
height 4 (in feet). Note this function belongs to the
square root family of functions. An open tank is

25 ft deep and filled to the brim with fiuid. (a) Use
a table of values to graph the 25 fi
function on the interval [0, 25],

(b} From your graph, estimate the
velocity of the fluid when the

water level is 7 ft, then find the

actual velocity. Are the answers | (
close? (¢) If the fluid velocity is

5 ft/sec, how high is the water in the tank?

obtain the graph of v from the graph of y = Vx,
then sketch the graph of v for x € [0, 400]. (b) If the
skid marks were 225 ft long, how fast was the car
traveling? Is this point on your graph?

Wind power: The power P generated by a certain
wind turbine is given by the function P(v) = thsv’
where P(v) is the power in watts at wind velocity v
(in miles per hour). (a) Describe the transformation
applied to obtain the graph of P from the graph of
y = v*, then sketch the graph of P for v € [0, 25]
(scale the axes appropriately). (b) How much
power is being generated when the wind is blowing
at 15 mph?
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108. Wind power: If the power P (in watts) being
generated by a wind turbine is known, the velocity
of the wind an be determined using the function
wP) = 5V P. (a) Describe the transformation

appli &m obtain the graph of v from the graph of

y = VP, then sketch the graph of v for P € [0, 512]

(scale the axes appropriately). (b) How fast is the

wind blowing if 343W of power is being generated?

Is this point on your graph?

109. Distance rolled due to gravity: The distance a ball
rolls down an inclined plane is given by the function
a‘( ) = 2¢%, where d(r) represents the distance

in feet afier ¢ sec. (a) Describe the transformation

applied to obtain the graph of 4 from the graph

> EXTENDING THE CONCEPT

111, Carefully graph the functions f(x) = [x| and
g(x} = 2Vx on the same coordinate grid. From the
graph, in what interval is the graph of g(x) above
the graph of f(x)? Pick a number {call it #) from this
interval and substitute it in both functions. Is
g(h) > f(h)? In what interval is the graph of g(x}
below the graph of f(x)? Pick a number from this
interval (call it &) and substitute it in both functions.

Is g(k) < f(k)?

> MAINTAINING YOUR SKILLS

114. (1.1) Find the distance between the points (—13, 9)
and (7, —12}, and the slope of the line containing
these points,

115, {Appendix A.2) Find
the perimeter of the
figure shown.

2x% +3x

Sx+ 2

5x

22 +3x + 5
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of y = £, then sketch the graph of d for
t € [0, 3]. (b) How far has the ball rolled after
2.5 sec?

110. Acceleration due to gravity: The velocity of a steel
ball bearing as it rolls down an inclined plane is
given by the function v(r) = 4¢, where v(7)
represents the velocity in feet per second after ¢ sec.
(a) Describe the transformation applied to obtain
the graph of v from the graph of y = ¢, then sketch
the graph of v for ¢ € [0, 3]. (b) What is the velocity
of the ball bearing after 2.5 sec? Is this point on
your graph?

112. Sketch the graph of f(x) = —2|x — 3| + 8 using
transformations of the parent function, then
determine the area of the region in quadrant I that
is beneath the graph and bounded by the vertical
linesx = Oandx = 6.

113. Sketch the graph of f{x) = x* — 4, then sketch the
graph of F(x) = (¥* — 4| using your intuition and
the meaning of absolute value (not a table of
values). What happens to the graph?

2 | 1 7
A . =t == =y - —,
116. (1.5} Solve for x 3,1: 2 2x 2

117, (2.1) Without graphing, state intervals where f(x)T
and f(x) for f(x} = (x — 4)* + 3.
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LEARNING OBJECTIVES

In Section 2.3 you will see
how we can:

) A. Solve absolute value
equations

3 B. Solve “less than”

absolute value

inequalities

Solve “greater than”

absolute value

Inequalitles

) D. Solve absolute value
equations and
inequalities graphically

[ E. Solve applications
involving absolute value

Qc

WORTHY OF NOTE

Note if & < 0, the equation {X] = &
has no solutlons singe the absolute
value of any quantity Is always
positive or zero. On a related note,
we can verify that ifk = 0, the
equation [X| = 0 hag only the
solution X = 0.

Solution »

While the equations x + 1 = 5 and |x + 1| = 5 are similar in many respects, note the
first has only the solution x = 4, while either x = 4 or x = —6 will satisfy the second.
The fact there are two solutions shouldn’t surprise us, as it’s a natural result of how
absolute value is defined.

A. Solving Absolute Value Equations

The absolute value of a number x can be thought of as its distance from zero on the num-
ber line, regardless of direction, This means |x| = 4 will have two solutions, since there
are two numbers that are four units from zero: x = —4 and x = 4 (see Figure 2.39).

Exactly 4 units ; Exactly 4 units
from zero * from zero
L & [} ] I I} 1 I} | & | L.
Flgure 2.39 -5 -4 =3 =2 -1 0 1 2 31 4 5

This basic idea can be extended to include situations where the quantity within
absolute value bars is an algebraic expression, and suggests the following property.
Property of Absolute Value Equations
If X represents an algebraic expression and & is a positive real number,

then |X] = k
implies X = —korX = &

As the statement of this property suggests, it can only be applied after the absolute
value expression has been isolated on one side.

EXAMPLE 1 »

Solving an Absolute Value Equatlon
Solve: —=5x — 7| + 2 = ~13.

Begin by isolating the absolute value expression,
=Sk —=7+2=-13
=5k —7=~-15
jp~7 =3

Now consider x — 7 as the variable expression “X” in the property of absolute

value equations, giving
x—7=-3 or
x=4 or

original equation
subtract 2
divide by =5 (simplified formy)

x—7=3
x=10 add7

apply the properly of absglute value equations

Substituting into the original equation verifies the solution set is {4, 10},

— = E— = —_——

p

Now try Exerclses 7 through 18

138

/I CAUTION »

For equations like those in Example 1, be careful not to treat the absolute valus bars as
simple grouping symbols. The equation —5(x — 7) + 2 = —13 has only the solution
x =10, and "misses” the second solution since it yields x — 7 = 3 in simplified form.
The equation —5x — 7| + 2 = —13 simplifies to |x — 7] = 3 and there are actually two
solutions. Also note that —~5jx — 7| # |—~5x + 35t

2-32
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EXAMPLE 2

Solution

Check

WORTHY OF NOTE

As illustrated in both Examples

1 and 2, the property we uss to
solve absolute valus equatlons can
only ba applied affer the absclute
valus term has been Isolated. As
you will see, the same is true for the
properties used to solve absolute
value Inequallties.

Solving an Absolute Value Equation I

Section 2.3 Absolute Value Functions, Equations, and inequalities 137

If an equation has more than one solution as in Example 1, they cannot be
simultaneously stored using the, W key to perform a calculator check (in func-
tion or “Func” mode, this is the variable X). While there are other ways to “get
around” this (using Y, on the home screen, using a TABLE in ASK mode,
enclosing thc solutions in braces as in {4, 10}, etc.), we can also store solutions
usmg the @7 keys. To illustrate, we’ll place the solution x = 4 in storage location A,
using 4 @Y T @P (A). Using this “ P T sequence we'll next place the
solution x = 10 in storage location B (Figure 2,40). We can then check both solutions
in turn, Note that after we check the first solution, we can recall the expression
using @3 & and simply change the A to B (Figure 2.41).

Figure 2.40 Figure 2.41
=+H q =Sabs(A~72+2Z 13
16+B -Sabs(B-¥)+2
16 13

Absolute value equations come in many different forms. Always begin by iso-
lating the absolute value expression, then apply the property of absolute value equa-
tions to solve.

2
Solve: ‘5 - Ex‘ - 9=3,
2 . .
|5 = gx —-9=8 original equation
|5 - %—x =17 add 9
2 2 apply the property of absolute |
5= g =-=17 or 5- gx =17 value equations ‘
2 |
= =12
3x 22  or 3x :
x =33 or x=—18 ‘

Forx=—18:\5—§(—18)‘—9=8 |
Is- %6 ~9=3 |

2
Forx=33:‘5 —5(33)‘ -9=38
I5-2(11)| —9=38

|5—-22|-9=8 |5+ 12| —9=38 l|
|-17| -9=28 [17] —9 =38
17-9=8 17-9=8 |
8 =8/ 8=8/
Both solutions check. The solution set is {—18, 33}. J

Now try Exerclses 19 through 22
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EXAMPLE 3

Solution

EXAMPLE 4

Solution

@ A. You've Just seen how
we can solve absolute value
equations

For some equations, it’s helpful to apply the multiplicative property of absolute
value:
Multiplicative Property of Absolute Value

If A and B represent algebraic expressions,
then |AB| = |4|BI.

Note that if A = —1 the property says |—1 - B| = |—1||B| = |B|. More generally
the property is applied where A is any constant.

Solving Equations Using the Multiplicative Property of Absolute Value
Solve: |—2x| + 5 = 13.

|-24 + 5 = 13
|-24 = 8
|=2|x = 8

2k =8
k=4

x=—4 or x=4
Both solutions check. The solution set is { —4, 4}.

Now try Exercises 23 and 24

In some instances, we have one absolute value quantity equal to another, as in |4| = |B].
From this equation, four possible solutions are immediately apparent:

(hA=B8B (H)A=-B 3)y-A=8 4 -A=-B

However, basic properties of equality show that equations {1) and (4) are equivalent, as
are equations (2) and (3), meaning all solutions can be found using only equations (1)
and (2),

Solving Absolute Value Equations with Two Absolute Value Expressions
Solve the equation 2x + 7| = |x — 1],

This equation has the form |4| = |B|, where A = 2x + 7and B = x — 1. From our

previous discussion, all solutions can be found using A = Band A = —B.
A=B A=-—-B
w+T=x—-1 D+T7=-(x-1)
2=x—-8 24+ 7= —-x+1
r=—8§ 3x= -6
x=-2

The solutions are x = —8 and x = —2. Verify the solutions by substituting them
into the original equation.

Now try Exercises 26 and 26
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EXAMPLE 5

Solution

Sectlon 2.3 Absolute Value Functions, Equations, and Inequalities 139

B. Solving “Less Than” Absolute Value Inequalitles

Absolute value inequalities can be solved using the basic concept underlying the
property of absolute value equalities. Whereas the equation |x] = 4 asks for all numbers
x whose distance from zero is equal to 4, the inequality x| << 4 asks for all numbers x
whose distance from zero is less than 4.

Distance from zero is less than 4
b

[ |
e e e}
Figure 2.42 -5 4 =3 =2 -l 0 t+ 2 3 4 5§

As Figure 2,42 illustrates, the solutions are x > —4 and x < 4, which can be written
as the joint inequality —4 < x < 4. This idea can likewise be extended to include
the absolute value of an algebraic expression X as follows,

Property I: Absolute Value Inequalitles (Less Than)
If X represents an algebraic expression and k is a positive real number,

then jX] < &
implies —k < X < &

Property I can also be applied when the “=" symbol is used. Also notice that if
k < 0, the solution is the empty set since the absolute value of any quantity is always
positive or zero.

Solving “Less Than" Absolute Value inequalities ]
Solve the inequalities: |
|

[3x + 2|
a. ) =1 b. 2x —7 < -5
I3x + 2
. T = 1 original inequality
|

[3x + 21 =4 mulliply by 4 '
—4=3x+2=4 applyPropery| I|
—6 = 3x =2 subtract 2 from all three parts ’

2

—2=y= g divide all three parts by 3 |

|

The solution interval is [ —2, 4]. |

|

b, [2x — 7] < =5 otiginal inequality |

Since the absolute value of any quantity is always positive or zero, the solution
for this inequality is the empty set: { }.

Now try Exerclses 27 through 38

As with the inequalities from Section 1.5, solutions to absolute value inequalities
can be checked using a test value, For Example 5(a), substituting x = 0 from the
solution interval yields:

= 1v

B | =
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& B. You've just seen how
we can solve “less than”
absolute valus inequalities

EXAMPLE 6

In addition to checking absolute value inequalities using a test value, the TABLE
feature of a graphing calculator can be used, alone or in conjunction with a relational
test, Relational tests have the calculator return a “1” if a given statement is true, and a
“0” otherwise. To illustrate, consider the inequality 2jx — 3| + | = 5, Enter the
expression on the left as Y, recalling the “abs(® notation is accessed in the @ menu:
@ () (NUM) “1:abs(” @ (note this option gives only the lefi parenthesis, you must
supply the right). We can then simply inspect the Y column of the TABLE to find out-
puts that are less than or equal to 5. To use a relational test, we enter Y; =< 5as Y,
(Figure 2.43), with the “less than or equal to” symbol accessed using @ 6:<.
Now the calculator will automatically check the truth of the statement for any value of x
{(but note we are only checking integer values), and display the result in the Y, column
of the TABLE (Figure 2.44). After scrolling through the table, both approaches
show that 2[x — 3| + 1 = 5forx € [1, 5].

Figure 2.43 Figure 2.44
Flokl Flotz Fiots 4 0y Ve
“WiB2ahs cH=30+1 i ? 0
NeBEY1RDS i £ 1
N SN
iz S
“Ye=
W= h| 7 0
sMe= M=5

C. Solving “Greater Than” Absolute Value Inequalities

For “greater than” inequalities, consider x| > 4. Now we're asked to find all numbers
x whose distance from zero is grearer than 4. As Figure 2.45 shows, solutions are
found in the interval to the left of —4, or to the right of 4. The fact the intervals are
disjoint (disconnected) is reflected in this graph, in the inequalities x << —4 orx > 4,
as well as the interval notation x € (—o0, —4) U (4, 00).

» Distance from zero
! is greater than 4

Distance from zero |
is greater than 4

I 1 i Il Il Il i Il ! !
T T T T T T T

Figure 2.45 7 6 -5 4 -3-2-1 0 1 2 3 4 5 6 7
As before, we can extend this idea to include algebraic expressions, as follows:

Property ll: Absolute Value Inequallties (Greater Than)
If X represents an algebraic expression and £ is a positive real number,
then |X| > &
implies X < —&k or X > 4%

Solving “Greater Than" Absolute Value Inequalltles

Solve the inequalities:

|
a. ——

X
3+
3

2

< -2 b.|5x+2|:_>~%
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Solution a. Note the exercise is given as a less than inequality, but as we multiply both l
sides by —3, we must reverse the inequality symbol,
1 x
—3}3 + E < =2 original inequality
x
‘3 + -2-’ >6 multiply by —3, reverse the symbol |
x X
3+ 5 < -6 or 3+ 3 >6 apply Property (1
X x
5 < =9 or 5 >3 subtract 3
x << —18 or x>6 multiply by 2 |

Property IT yields the disjoint intervals x € (—o0, —18) U (6, o0) as the solution, ‘

30 -24 ~1B—12 -6 0 6 12 18 24 30

il ' ! Il 1 1 i . ‘

3
b 5x + 2| = _E original inequality

Since the absolute value of any quantity is always positive or zero, the solution "
for this inequality is all real numbers: x € R.

o

N;w try Exercises 39 through 54

A calculator check is shown for part (a) in Figures 2.46 through 2.48.

Figure 2.48 Flgure 2.47 Figure 2.48
Fiotd Plotz Floks * Y Yz b Y1 Ye

“WiBC -1-32abs (34 B -2.833 | 1 g 1,833 | 0
ool 3| EE | ; £.167 | 1
syzBYi< -2 50 | 33z |1 i 5335 | 1
s B | | ez |1
= 17 | -im3z|o | 3555 | 1
wNWEs =23 K=11

This helps to verify the solution interval is x € (—oo, —18) U (6, co).

Due to the nature of absolute value functions, there are times when an absolute
value relation cannot be satisfied. For instance the equation [x — 4| = —2 has no solu-
tions, as the left-hand expression will always represent a nonnegative value. The in-

& C. You've just seen how equality |2x + 3| <X ~1 has no solutions for the same reason. On the other hand, the
we can solve “greater than" inequality [9 — x| = 0 1s true for all real numbers, since any value substituted for x will
absolute value inequalities result in a nonnegative value. We can generalize many of these special cases as follows.

Absolute Value Functions—Speclal Cases

Given £ is a positive real number and A represents an algebraic expression,

Al = —k A < —k A > —k
has no solutions has no solutions is true for all
real numbers
See Exercises 51 through 54,

'

1

CAUTION » Ba sure you note the difference between the Individual solutions of an absolute valus
equation, and the solution intervals that often result from solving absolute value inequali-
ties. The solution {—2, 5} indicates that both x = —2 and x = 5 are solutions, while the so-
lution [—2, 5) indicates that all numbers between —2 and 5, including -2, are solutions,
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=  EXAMPLE 7

Solution

E D. You've just seen how
we can solve absolute value
equations and inequalities
graphically

D. Solving Absolute Value Equations

and Inequalities Graphically
The concepts studied in Section 1.5 (solving linear equations and inequalities
graphically) are easily extended to other kinds of relations. Essentially, we treat

cach expression forming the equation or inequality as a separate function, then graph
both functions to find points of intersection (equations) or where one graph is above or

Figure 2.49 Figure 2.50
3.1 31

?1=-zub=¢3'1}?"\.\\ o l,f\ .

=4.7 |——— f"l'.-' ¥ 4.7 -47 / 4.7
Fs ‘ \ e ¥
7 X

=0 Y=i ¥Y=-g N
-3.1 -31

below the other (inequalities). For —2fx — 1| + 3 < —2, enter the expression
—2IX — 1] + 3 as Y, on the @& screen, and —2 as Y,. Using &® 4:ZDecimal
produces the graph shown in Figure 2,49, Using @) @& (CALC) S:intersect, we
find the graphs intersect atx = —1.5 and x = 3.5 (Figure 2.50), and the graph of Y, is
above the graph of Y, in this interval, Since this is a “less than” inequality, the solutions
are outside of this interval, which gives x € (—oo, —1.5) U (3.5, c0) as the solution
interval. Note that the zeroes/x-intercept method could also have been used.

Solving Absolute Equations and Inequalities Graphically
For f(x) = 2.5[x — 2| — 8 and g(x) = %x — 3, so0lve

a flx) = glx) b fix)=glx) e flx} > glx)
a. With f(x) = 2.5k — 2| — 8asY, and

1
glx) = Pl 3 as Y, (set to graph in bold),

using @) @ (CALC) S:intersect
shows the graphs intersect (Y, = Y,) at :
x = 0 and x = 5 (see figure). These are __,,.-"": .\{',?
Inkersection
= Y=~k
-10
b. The graph of Y, is below the graph of Y, (Y, < Y,) between these points of

il 1)

1
the solutions to 2.50x — 2| — 8 = >* 3.

. 1 .
intersection, so the solution interval for 2.5y — 2| — 8§ = Ex —3isx e [0, 5].

¢. The graph of Y, is above the graph of Y, (Y > Y) outside this interval,

1
giving a solution of x € (—o00, 0) U (5, 00) for 2.5jx — 2| — § > ¥ 3.

Now try Exerclses 55 through 58

E. Applications Involving Absolute Value

Applications of absolute value often involve finding a range of values for which a given
statement is true. Many times, the equation or inequality used must be modeled after
a given description or from given information, as in Example 8,
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EXAMPLE 8 Solving Applications Involving Absolute Value Inequalities

For new cars, the number of miles per gallon (mpg) a car will get is heavily
dependent on whether it is used mainly for short trips and city driving, or primarily
on the highway for longer trips. For a certain car, the number of miles per gallon
that a driver can expect varies by no more than 6.5 mpg above or below its field
tested average of 28.4 mpg. What range of mileage values can a driver expect

for this car?

— e — — - ————— =

—r———

Solution Field tested average: 28.4 mpg gather infarmation
mileage varies by no more than 6.5 mpg highlight key phrases
. -65 +65 |
-« | > |
S 284 S make the problem visual |

Let m represent the miles per gallon a driver can expect.  assign a variable |
Then the difference beiween nt and 28.4 can be no more

than 6.5, or |m — 28.4| = 6.5. write an equation model
[m — 284 = 6.5 equation model
—-65=m—284=65 apply Properly | |
219 =m =349 add 28.4 to all three paris |

The mileage that a driver can expect ranges from a low of 21.9 mpg |
to a high of 34.9 mpg. |

>

@ E. You've just seen how e —— —
we can solve applications
involving absolute value

Now try Exerclses 61 ti1r_ough 70

» CONCEPTS AND VOCABULARY

Fill in the blank with the appropriate word or phrase. Carefuily reread the section if needed.

1. When multiplying or dividing by a negative 2. To write an absolute value equation or inequality in
quantity, we _________ the inequality symbol to simplified form, we _____ the absolute value
maintain a true statement, expression on one side.

3. The absolute value equation |2x + 3] = 7 is true 4. The absolute value inequality |3x — 6] < 12 is
when2x + 3 = orwhen2x + 3 = true when 3x — 6 > and 3x — 6 < c

Describe the solution set for each inequality (assume Xk > 0). Justify your answer.
S.lax + b < —k 6. lax + b > —k
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»> DEVELOPING YOUR SKILLS

Solve each absolute value equation. Write the solution in
set notation. For Exercises 7 to 18, verify solutions by
substituting into the original equation. For Exercises
1926 verify solutions using a calculaton.

T.2%m—-1~7=
8.3 — 5| - 14=—2

9. -3+ 5 +6=-15
10, -2y + 3| —4=—14
11. 244y + 5] — 6.5 = 10.3

12, Tew + 5| + 63 = 11.2
13, —[lp-3+6=-5
4 —PBg+d+3=-5
15, -2 — 3= —4

16. =3 — 5= —6

17. =235 - 17 = -5

18, =52y - 14 = 6
5+

19, -3|— + 4

—1=—4
2

20.—2)3—3 +1=-35

3
21. 87)p — 7.5 — 26.6 = 8.2
22. 53/g + 9.2| + 6.7 =438
23. 8.7|-2.5x — 26,6 = 8.2
24. 5.3(1.257 + 6.7 = 43.8
28, [x — 2 = 3x + 4|

26, [2x = 1= |x + 3

Solve each absolute value inequality. Write solutions in
interval notation. Check solutions by back substitution,
or using a calculator.

27.3p + 4+ 5<8
28.5g—2-7=8
29, -3jm-2>4

30. ~2n| +3 > 7

33— 111+ 69
32 Rc+3-5<1
3. Y-3+12<7
4.2-3+5=4

2-40

|5v -+ 1|

; +8<9
[Bw — 2]

36. 6<8
4x + 5 1 7
y—3 3| 15

3 4 8| 16

Y p+3>7

40. m—1>5

41, —2w - 5= ~-11

42 -5y - 3= -23
lol _5_1

432 623
Ay

1 2*4

48, 3|5 T +9=15

46, S2c + 71+ 1= 11

4 1
4.2 < ‘—3m+-ﬁ-‘ s

3

4

49. 45 — 24| — 9 > 11

50, 37 + 2k — 11 > 10

51, 3.9/4g — 5| + 8.7 = —22.8
52. 0.92p + 7| + 16.11 =< 10.89
53,z -9+ 624

54. 5u — 3+ 8> 6

48, 4 = ’—‘—'EH

;| Use the intersect command on a graphing calculator
= and the glven functions to solve (a) f(x) = g(x),

(b) f(x) = g(x), and (¢) f(x) < g{x).

S5 /) =pk—3+2gx) =4 +2

56, flx) = = + 2| ~ 1,g(x) = —3x - 9

57, f(x) = 05}y + 3| + 1, () = =2 + 1| + §
58.fx)=2h — 3| +2,8x) = -4+ 6
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» WORKING WITH FORMULAS

59. Spring Oscillation: |[d — x| = L

A weight attached to a spring hangs at rest a distance

of x in. off the ground. If the weight is pulled down
(stretched) a distance of L inches and released, the
weight begins to bounce and its distance ¢ off the
ground must satisfy the indicated formula. (a) If x
equals 4 ft and the spring is stretched 3 in, and
released, solve the inequality to find what distances
from the ground the weight will oscillate between.
(b) Solve for x in terms of L and d.

» APPLICATIONS

Solve each application of absolute value.

61. Altitude of jet stream: To take advantage of the jet
stream, an airplane must fiy at a height # (in feet)
that satisfies the inequality jh — 35,050| = 2550.
Solve the inequality and determine if an altitude of

34,000 ft will place the plane in the jet stream.
62. Quality control tests: In order to satisty quality

control, the marble columns a company produces

must earn a stress lest score S that satisfies the

inequality |S — 17,750] = 275. Solve the inequality
and determine if a score of 17,500 is in the passing

range.

63. Submarine depth: The sonar operator on a
submarine deiects an old World War II submarine
net and must decide to detour over or under the
net, The computer gives him a depth model

\d — 394| — 20 > 164, where d is the depth in feet
that represents safe passage. At what depth should the
submarine travel to go under or over the net? Answer

using simple inequalities.

64. Optimal fishing depth: When deep-sea fishing,
the optimal depths 4 (in feet) for catching a
certain type of fish satisfy the inequality

28|d — 350| — 1400 < 0. Find the range of depths

that offer the best fishing. Answer using simple
inequalities.

For Exercises 65 through 68, (a) develop a model that
uses an absolute value inequality, and (b) solve.

65. Stock valne: My stock in MMM Corporation

fluctuated a great deal in 2009, but never by more

than $3.35 from its current value. If the stock is
worth $37,58 today, what was its range in 2009?

60. A “Fair” Coin: b

Sectlon 2.3 Absolute Value Functions, Equations, and Inequalities

66.

67.

68

145

- 50

‘ < 1.645

If we flipped a coin 100 times, we expect “heads” to
come up about 50 times if the coin is *“fair.” In a study
of probability, it can be shown that the number of
heads A that appears in such an experiment should
satisfy the given inequality to be considered “fair.”

(a) Solve this inequality for #. (b} If you flipped a
coin 100 times and obtained 40 heads, is the coin
“fair™?

Traffic studies: On a
given day, the volume
of traffic at a busy
intersection averages
726 cars per hour
(¢ph), During rush hour
the volume is much
higher, during *“off
hours” much lower.
Find the range of this
volume if it never
varies by more than
235 ¢ph from the
average.

Physical training for recruits: For all recruits in the
3rd Armored Battalion, the average number of sit-ups
is 125, For an individual recruit, the amount varies
by no more than 23 sit-ups from the battalion
average. Find the range of sit-ups for this battalion.

Computer consultant salaries: The national
average salary for a computer consultant is
$53.336. For a large computer firm, the salaries
offered to their employees vary by no more than
$11,994 from this national average. Find the range
of salaries offered by this company,

, Tolerances for sport balls: According to the official

rules for golf, baseball, pool, and bowling, (a) golf
balls must be within 0.03 mm of d = 42.7 mm,

(b} baseballs must be within 1.01 mm of

d = 73.78 mm, (¢) billiard balls must be within

0.127 mm of ¢ = 57.150 mm, and (d) bowling balls
must be within 12.05 mm of d = 2171.05 mm, Write
each statement using an absolute value inequality,
then (e) determine which sport gives the least

width of interval

tolerance ¢ (t = )for the diameter

of the ball.

average value
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70. Automated packaging: The machines that fill
boxes of breakfast cereal are programmed to fill
each box within a certain tolerance, If the box is
overfilled, the company loses money. If it is
underfilled, it is considered unsuitable for sale,

» EXTENDING THE CONCEPT

71. Determine the value or values (if any) that will
make the equation or inequality true.

a. f+x=8 uu—msg

cx—pl=x+
ef2r+1l=x-3
72. The equation |5 — 2x| = |3 + 2| has only one

d. [v + 3 = 6x

solution. Find it and explain why there is only one.

73. In many cases, it can be helpful to view the solutions

to absolute value equations and inequalities as

follows. For any algebraic expression X and positive

> MAINTAINING YOUR SKILLS

74. (Appendix A.4) Factor the expression completely:
18x% + 215 — 60x.

-1
76. (Appendix A.6) Simplify ————= by rationalizing the
3+\3

denominator. State the result in exact form and
approximate form (to hundredths).

2-42

Suppose that boxes marked “14 ounces” of cereal
must be filled to within 0.1 oz. Find the acceptable
range of weights for this cereal.

constant k, the equation |[X| = k has solutions X = &
and —X = k, since the absolute value of either
quantity on the left will indeed yield the positive
constant . Likewise, |X| < & has solutions X < &
and —X < k. Note the inequality symbol has not
been reversed as yet, but will naturally be reversed
as part of the solution process. Solve the fotlowing
equations or inequalities using this idea.

b. jv — 7] > 4
¢ 3+ 2 =12

d 3 —4 +7=—11

2
75. (1.5) Solve V? = Ll for p (physics).
CpA

77. (Appendix A.3) Solve the inequality, then write the
solution set in interval notation:

~3(2x - 5) > 2x + 1) - 7.

LY MID-CHAPTER CHECK

1. Determine whether the following function is even,
W

4x

&) 2. Use a graphing calculator to find the maximum and
= minimum values of

flx) = ~1.9(x* — 2.3x + 2.2x — 5.1). Round to
the nearest hundredth.

odd, or neither. f(x) = »* +

3. Use interval notation to identify the interval(s)
where the function from Exercise 2 is increasing,
decreasing, or constant, Round to the nearest
hundredth,

4. Write the equation of the function that has the same
graph of f{x} = Vx, shifted left 4 units and up 2
units.

5. For the graph given, (a) identify
the function family, (b} describe
or identify the end-behavior,
inflection point, and x- and P 7
y-intercepts, (¢} determine X
the domain and range, and
(d) determine the value of k if \
S(k) = 2.5. Assume required 2 \
features have integer values.

Exercise 5

L ¢

e ¥
- =l
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=} 6. Use a graphing calculator to graph the given 9, Solve the following absolute value inequalities.
a functions in the same window and comment on Write solutions in interval notation.
what you observe. a3ld—2+1.1=73
plx) = (x =3P gl =—(x—3) LS P 1
rx) = —3(x - 3)’ T3 2
7. Solve the following absolute value equations. Write c. —Sk—2/+3<4

he solution in set notation, . . . . .
' set i 10. Kiteboarding: With the correct sized Kite, a person

a. -2-|d -5 +1=7 b 5—|s+3=— can kiteboard when the wind is blowing at a speed

3 2 w (in mph) that satisfies the inequality jw — 17| = 9.
Solve the inequality and determine if a person can
kiteboard with a windspeed of (a) 5 mph?
(b) 12 mph?

8. Solve the following absolute value inequalities.
Write solutions in interval notation.

adg+4-2<10 b

§+2| +5=5

> REINFORCING BASIC CONCEPTS

Using Distance to Understand Absolute Value Equations and Inequalities

For any two numbers a and b on the number line, the distance berween a and b can be written |Ja — b or [b — a|. In exactly
the same way, the equation [x — 3| = 4 can be read, “the distance between 3 and an unknown number is equal to 4.”
The advantage of reading it in this way (instead of “the absolute value of x minus 3 is 47), is that a much clearer
visualization is formed, giving a constant reminder there are two solutions, In diagram form we have Figure 2.51.

Distance between . 4 units 4units ., Distance between
Jandxisd, | [l Tl dandrxisd
Figure 2.51 s -a-3-2(C)o 1L 2 3 45 6 ()& 9
From this we note the solutionsarex = —landx = 7.

In the case of an inequality such as x + 2| = 3, we rewrite the inequality as [x — (—2){ = 3 and read it, “the distance
between —2 and an unknown number is less than or equal to 3.” With some practice, visualizing this relationship
mentally enables a quick statement of the solution: x € [—5, 1]. In diagram form we have Figure 2.52.

Distance between —2 v Bunits . 3uonits . Distance between -2
and x is less than or equal to 3. | i | and xis fess than or equal to 3.

Figure 2,52 Tt 3 6 (94321 0()2 3 45 6

Equations and inequalities where the coefficient of x is not 1 still lend themselves to this form of conceptual under-
standing, For |2x — 1| = 3 we read, “the distance between 1 and twice an unknown number is greater than or equal to 3.”
On the number line (Figure 2.53), the number 3 units to the right of 1 is 4, and the number 3 units to the left of 1 is —2.

Distance between 1 and ( 3anits , 3units Distance between | and
2y ig grearter than ot equal 1o 3. s greater than or equal to 3

Figure 2.53 ~6 -5 —4 -3 () 0

o
e

@.

e
o
i
oo
\

For v = - 2,x = —1, and for 2+ = 4, x = 2, and the solution set is x € (—o0, =1] U [2, 00).
Attempt to solve the following equations and inequalities by visualizing a number line. Check all results algebraically.

Exercise 1: |[x — 2| = 5 Exercise2: x + 1| = 4 Exercise 3: 2x — 3| = 5



2 W Basic Rational Functions and Power Functions;
More on the Domain

LEARNING OBJECTIVES

In Section 2.4 you will see
how we can:

QA

148

Graph basic raticnal
functlons, identify vertical
and horizontal
asymptotes, and describe
and-behavior

. Use transformations to

graph basic ratlonal
functions and write the
equation for a given
graph

. Graph basic power

functlons and state thelr
domalns

. Solve applications

Involving basic rational
and power functions

In this section, we introduce two new kinds of relations, rational functions and power
functions, While we’ve already studied a variety of functions, we still lack the ability
to model a large number of important situations. For example, functions that model the
amount of medication remaining in the bloodstream over time, the relationship
between altitude and weightlessness, and the equations modeling planetary motion
come from these two families.

A. Rational Functions and Asymptotes

Just as a rational number is the ratio of two integers, a rational function is the ratio of
two polynomiais. In general,

Ratlonal Functions

A rational function V(x) is one of the form

p(x)
V(x) = —,
where p and d are polynomials and d(x) # 0.
The domain of V(x) is all real numbers, except the zeroes of d.

The simplest rational functions are the reciprocal function y = % and the reci-
procal square function y = ;.lz, as both have a constant numerator and a single term in
the denominator. Since division by zero is undefined, the domain of both excludes
x = 0. A preliminary study of these two functions will provide a strong foundation for
our study of general rational functions in Chapter 4.

1
The Reclprocal Functlon: y = X

The reciprocal function takes any input {other than zero) and gives its reciprocal as the
ontput. This means large inputs produce small outputs and vice versa. A table of
values (Table 2.1) and the resulting graph (Figure 2.54) are shown,

Table 2.1 Figure 2,54
* J x ¥
= 1000 — 171000 /1000 1000
-5 -5 | 13 3
—4 —1/4 | 1/2 2
-3 -1/3 || 1 1
-2 -1/2 2 172
-1 -1 3 1/3
-1/2 -2 4 144
-1/3 -3 _ 5 145
— 171000 — 1000 1000 171000
0 | undefined

2-44
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WORTHY OF NOTE

The notation used for graphica!
behavicr always bagins by
describing what is happening to the
k-values, and the resulting effect on
the y-values. Using Figure 2.55,
visualize that for a point {x, ¥} on
the graph of ¥ = 2, as x gets larger,
y must become smaller, particularly
since thair product must always be
1y =Ll=xy=1).

Figure 2.55
Ly

X X
EXAMPLE 1
Solution
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Table 2.1 and Figure 2.54 reveal some interesting features. First, the graph passes
the vertical line test. verifying y = ¥ is indeed a function. Second, since division by
zero is undefined, there can be no corresponding point on the graph, creating a break
at x=0. In line with our definition of rational functions, the domain is
x € (—o0, 0) U (0, o). Third, this is an odd function, with a “branch” of the graph in
the first quadrant and one in the third quadrant, as the reciprocal of any input maintains
its sign. Finally, we note in QI that as x becomes an infinitely large positive number, y
becomes infinitely small and closer to zero. It seems convenient to symbolize this end-
behavior using the following notation:

y—0
yapproaches O

as x —r 00,
as x becomes an infinitely
large positive number

Graphically, the curve becomes very close to, or approaches the x-axis,

We also note that as x approaches zero from the right, y becomes an infinitely large
positive number: as x — 0", ¥ = 00. Note a superscript + or — sign is used to indi-
cate the direcrion of the approach, meaning from the positive side (right) or from the
negative side (left).

Desctibing the End-Behavior of Ratlonal Functlons

Fory = Lin QIII (Figure 2.54), |
a. Describe the end-behavior of the graph.
b. Describe what happens as x approaches zero.

Similar to the graph’s behavior in QI, we have
a. In words: As x becomes an infinitely large negative number, y approaches zero. |
In notation: As x — —oc0, y — 0.
b. In words; As x approaches zero from the left, y becomes an infinitely large
negative number. In notation: As x - 07, y > —00. |

Now try Exerclses 7 and 8

The Reclprocal Square Function: y = xlz

From our previous work, we anticipate this graph will also have a break at x = 0. But
since the square of any negative number is positive, the branches of the reciprocal
square function are both above the x-axis. Note the result is the graph of an even func-
tion. See Table 2.2 and Figure 2.56.

Table 2.2 Figure 2.56
x ¥ x y ; s I
1000 | 171,000,000 | 171000 | 1,000,000 f |
= (-1, 1) | (1, 1)
5 1125 173 9 J i
4 1/16 112 4 | Ny YL
-5, 52/ \ 5.2
'7' l',-'g l ] ( 23 ; ﬁ'/ X “_E ‘|.I
2 1/4 2 1/4 2 SN i
(=3, 4
— 1 3 19 ' 0
—172 4 4 1/16
~1/3 9 5 1125
—1/1000 | 1.000,000 | 1000 | 1/1,000,000 =
0 undefined
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EXAMPLE 2

Solution

Similar to y = }r, large positive inputs generate small, positive outputs: as

x —» 00, y — 0, This is one indication of asymptotic behavior in the korizontal direc-
tion, and we say the line y = 0 (the x-axis) is a horizontal asymptete for the recipro-
cal and reciprocal square functions. In general,

Horizontal Asymptotes

Given a constant &, the line y = & is a horizontal asymptote for V if,
as x tncreases or decreases without bound, V(x) approaches &;

asx— —oo, V(x) >k  or as x — oo, V(x) =k

As shown in Figures 2.57 and 2.58, asymptotes are represented graphically as
dashed lines that seem to “guide” the branches of the graph. Figure 2.57 shows a hor-
izontal asymptote at y = 1, which suggests the graph of f(x) is the graph of y = }
shifted up 1 unit. Figure 2.58 shows a horizontal asymptote at y = —2, which suggests

the graph of g(x)} is the graph of y = % shifted down 2 units.

Figure 2.57 Figure 2.58
}roogy = Ly
I il
2 \
i T =y = | ! \
__“\.
5 \'\ 5 ox ir \I 3y
x A X
—I |! IL'|
1 \
J \
-l . s et —_——
3
k!

Describing the End-Behavior of Rational Functions
For the graph in Figure 2.58, use mathematical notation to
a. Describe the end-behavior of the graph and name the horizontal asymptote.
b. Describe what happens as x approaches zero.
a. asx — —oo, glx) — —2,
as x — 00, glx) > —2,

b. asx— 07, g{x) ~ o0,
asx =07, g(x) o0

y = —2 is a horizontal asymptote
Now try Exercises 9 and 10

While the graphical view of Example 2(a) (Figure 2.58) makes these concepts
believable, a numerical view of this end-behavior can be even more compelling. Try
entering Ilf — 2asY; onthe screen, then go to the TABLE feature (TbStart = —3,
ATbl = 1; Figure 2.59). Scrolling in either direction shows that as |x| becomes very
large, Y, becomes closer and closer to —2, but will never be equal to —2 (Figure 2,60).

Figure 2.59 Flgure 2.60
A | Y1 A9

-1.889 14 -1.995
-2 178 ic -1.888
-1 -1 15 -188g
9 ER: i7 -1.887
: e 15 428
3 |-1m89 | 1383

=3 h=20




2-47

& A. You've just seen how
we can graph basic rational
functions, identify vertical and
horizontal asymptotes, and
describe end-behavior

EXAMPLE 3
Solution
- ¥ xl=2
| :ﬁ
S
g.—r-zl.f:———F--——Jl—::—:
§ _'ia,\_ N
an LI

0,08t
(L) =2

-3

-4

—5
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From Example 2(b), we note that as x becomes smaller and close to 0, g becomes
very large and increases without bound. This is one indication of asymptotic behavior
in the verrical direction, and we say the line x = 0 (the y-axis) is a vertical asymptote
for g (x = 0 is also a vertical asymptote for f in Figure 2.57). In general,

Vertical Asymptotes

Given a constant &, the vertical line x == A is a vertical asymptote for a function V if,
as x approaches k, V(x) increases or decreases without bound:

asx—h", V(x) > %00 or asx—oh,V(x)— o

Here is a brief summary:

Reciprocal Function Reciprocal Quadratic Function
1 1
fo)y ==+ glr) = =
Domain: x € (—o0, 0) U (0, o) Domain: x € (—o0, 0) U (0, o)
Range: y € (—oc, 0) U (0, 00) Range: y € (0, o0}
Horizontal asymptote: y = 0 Horizontal asymptote: y = 0
Vertical asymptote: x = 0 Vertical asymptote: x = 0

B. Using Asymptotes to Graph Basic Rational Functions

Identifying these asymptotes is useful because the graphs of y = }Eand y = % can be
transformed in exactly the same way as the toolbox functions. When their graphs
shift—the vertical and horizontal asymptotes shift with them and can be used as
guides to redraw the graph. In shifted form,

a
= -+ i i
flx) Py k for the reciprocal function, and
a
x) = ———= = & for the reciprocal square function.
8x) AP p q

When horizontal and/or vertical shifts are applied to simple rational functions, we
first apply them to the asymptotes, then calculate the x- and y-intercepts as before, An
additional point or two can be computed as needed to round out the graph.

Graphing Transformatlons of the Reclprocal Function

1
Sketch the graph of g(x) = Py + 1 using transformations of the parent function.

|
The graph of g is the same as that of y = 7 but shifted 2 units right and 1 unit upward.
This means the vertical asymptote is also shifted 2 units right, and the horizontal
1
asymptote is shifted 1 unit up. The y-intercept is g(0} = 3 For the x-intercept:
1

0 =——+1 subsiitute 0 for glx) |
x—2

-1 = T2 subtract 1
—~1x—2)=1 multiply by (x — 2)
x=1 solve

The x-intercept is (1, 0). Knowing the graph is from the reciprocal function family
and shifting the asymptotes and intercepts yields the graph shown.

Now try Exerclses 11 through 26
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EXAMPLE 4

Solution

@J B. You've just seen how
we can use asymptotes and
transformations to graph basic
rational functions and write the
equation for a given graph

These ideas can be “used in reverse” to determine the equation of a basic rational
function from its given graph, as in Example 4.

Writing the Equation of a Basic Rational Function, Glven Its Graph

Identify the function family for the graph given, then use v
the graph to write the equation of the function in “shifted f
form.” Assume |g| = 1. it
|
The graph appears to be from the reciprocal square |’ |
family, and has been shifted 2 units right (the vertical R o £
asymptote is at x = 2), and 1 unit down (the horizontal |
asymptote isaty = —1). From y = %, we obtain :
(x) =2y — 1 as the shifted form. :

Now try Exercises 27 through 38

Using the definition of negative exponents, the basic reciprocal and reciprocal
square functions can be written as y = x~ ' and y = x~ %, respectively. In this form, we
note that these functions also belong to a family of functions known as the power func-
tions (see Exercise 80).

C. Graphs of Basic Power Functions

Italian physicist and astronomer Galileo Galilei (1564—1642) made numerous contri-
butions to astronomy, physics, and other fields. But perhaps he is best known for his
expetiments with gravity, in which he dropped objects of different weights from the
Leaning Tower of Pisa, Due in large part to his work, we know that the velocity of an
object after it has fallen a certain distance is v = V/2gs, where g is the acceleration due
to gravity (32 ft/sec?), s is the distance in feet the object has falten, and v is the veloc-
ity of the object in feet per second (see Exercise 71). As you will see, this is an exam-
ple of a formula that uses a power function.

From previous coursework or a review of radicals and rational exponents (Ap-
pendix A.6), we know that Vx can be wrillen as f, and WV as i, enabling us to write
these functions in exponential form: f(x) = x* and g(x) = £, In this form, we sec that
these actually belong to a larger family of functions, where x is raised to some power,
called the power functions.

Power Functions and Root Functions

For any constant real number p and variable x, functions of the form

ORES
1
are called power functions in x, If p is of the form o for integers #n = 2, the functions

fx) = ¥ & f(x) =

are called root functions in x.
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EXAMPLE §

Solution
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The functlonsy =xiy= f‘" y=xy= Vx, and y = areall power functions,
but only y = x* and y= W% are also root functions. Initially we will focus on
power functions where p > 0,

Comparing the Graphs of Power Functions

Use a graphm g calculator to graph the power functions f(x) g( ) = »,

A(x) = x* p(.x) = %, and g(x) = »* in the standard viewing window. Make an
observation in QI regarding the effcct of the £xponent on each function, then
discuss what the graphs of y = +* and ¥ = ¢ would look like.

First we enter the functions in sequence Flgure 2.61, 2.62 |
as Y, through Y5 on the %7 screen Flotl Flote Flots :
(Figure 2.61). Using @aw» 6:ZStandard |~y 41 B¥~¢1.74)

produces the graphs shown in “WeBR (2732

Figure 2.62. Narrowing the window T E

to focus on QI (Figure 2.63: ""'"'"'E:x:: C3-2)

x E[—4,10),y € [—4,10]), we :3:5%}: 0

quickly see that for x = 1, larger Woa=| o

values of p cause the graph of y = x”
to increase at a faster rate, and smaller

values at a slower rate, In other words 1o

1 1
(forx = 1), sinccg < T the graph of

1 . n=g ¥=5
¥ = x* would increase slower and appear =10
to be “under” the graph of Y, = X7,
Flgure 2.63
Since % > 2, the graphof y = +* would s

0 Y Y,

increase faster and appear to be “more '3
narrow” than the graph of Y5 =
(verify this).

n

Now try Exerclses 39 through 48

The Domain of a Powey Function

In addition to the observations made in Example 5, we can make other important notes,
particularly regarding the domains of power functions. When the exponent on a power

function is a rational number - > 0in simplest form, it appears the domain is all real

numbers if n_is odd, as seen in the graphs of g(x) = a%, h( V=gl = A, and
glx) = 5* = . Ifnisan even number, the domain is all nonnegative real numbers as
seen in the graphs off(x) = v and p(x) = %, Further exploration will show that if p is
irrational, as in y = x7 the domain is also all nonnegative real numbers and we have
the following:
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The Domain of a Power Function
Given a power function f(x) = x* withp > 0.

m. , e
LIfp= 182 rational number in simplest form,

a. the domain of fis all real numbers if n is odd: x € (—o0, x),
b. the domain of fis all nonnegative real numbers if  is even: x € [0, 00).

2. If p is an irrational number, the domain of fis all nonnegative real numbers:
x € [0, o).

Further confirmation of statement 1 can be found by recalling the graphs of
y=vVx=xandy = Vx = «* from Section 2.2 (Figures 2.64 and 2.65).

Figure 2,64 Figure 2.65
¥ ¥
5 3 - 4
(note o 18 CVL‘-“). 3 (U. 3 (note i 18 l}dd]
(4,2) (6 24) _—&> (8:2)
T e
" L=
{0,0) /a‘“-“ “.‘-Ulﬁli-')
- [ # 3
x 8 o 4 L) x
L (=1 =0
(-8, —2)
5 5
Domain: x € [0, 00) Domain: x € [—oo, o)
Range: y € [0, o0) Range: y € [—c0, 00)

EXAMPLE 6 Determining the Domains of Power Functions
State the domain of the following power functions, and identity whether each is
also a root function.

afx)=2 bogx)=+° chx)=VYx d g = 4 er(x) = x5

Solution a. Since n is odd, the domain of fis all real numbers; f'is not a root function.
b. Since r is even, the domain of gisx € [0, 00); g is a root function.
¢. In exponential form A(x) = +#. Since nis even, the domainof Aisx € |j0, 00);
h is a root function.
d. Since n is odd, the domain of g is all real numbers; ¢ is not a root function
€. Since p is irrational, the domain of risx € |:0. oo); r is not a root function

Now try Exerclses 49 through 58

Transformatlons of Power and Root Functlons

As we saw in Section 2.2 (Toolbox Functions and Transformations), the graphs of the
root functions y = Vx and y = Vx can be transformed using shifts, stretches,
reflections, and so on. In Example 8(b) (Section 2.2) we noted the graph of
h(x) = 2%x — 2 — 1 was the graph of y = Vx shifted 2 units right, stretched by a
factor of 2, and shifted 1 unit down. Graphs of other power functions can be trans-
formed in exactly the same way.
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Solution

& €. You've just seen how
we can graph basic power
functions and state their
domains

EXAMPLE 8

EXAMPLE 7 -
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Graphing Transformations of Power Functions

Based on our previous observations,
a. Determine the domain of f(x) = x and g(x) = +, then verify by graphing
them on a graphing calculator.
b. Next, discuss what the graphs of F(x) = (x — 28 — 3and G(x) = -2 +2
will look like, then graph each on a graphing calculator to verify,

a. Both fand g are power functions of the form y = x, For f, n is odd so its
domain is all real numbers. For g, n is even and the domain is x € [0, 00).
Their graphs support this conclusion (Figures 2.66 and 2.67).

Figure 2.66 Flgure 2.867
0 10
=i 2/3) | f1=n*l3/2) f
o o -"'-F_*_ o
H=a Y=y H=Y IY=@
~10 10

b. The graph of F will be the same as the graph of f, but shifted two units right
and three units down, moving the vertex to (2, —3). The graph of G will be the
same as the graph of g, but reflected across the x-axis, and shifted 2 units up
(Figures 2.68 and 2.69).

Figure 2.68 Flgure 2.69
10 10
I=iH=21™ (2 30=3 L el e T
_10-\-5-_?7-&_...’;’.';-;-.;_._5-’110 —-10 “"""'?\1""""'[0 |
o |
H=E y=-3 H=Y V=B
-10 =10

Now try Exercises 59 through 62

D. Applications of Rational and Power Functions

These new functions have a variety of interesting and significant applications in the
real world. Examples 8 through 10 provide a small sample, and there are a number of
additional applications in the Exercise Set. In many applications, the coefficients may
be rather large, and the axes should be scaled accordingly.

Modeling the Cost to Remove Waste |

For a large urban-centered county, the cost to remove chemical waste and other |

— 18,000
p— 100 180 {

where C( p) represents the cost (in thousands of dollars) to remove p percent of
the pollutants.

pollutants from a local river is given by the function C(p) =
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Solution

a. Find the cost to remove 25%, 50%, and 75% of the pollutants and comment on |
the results.

b. Graph the function using an appropriate scale, I

¢. Use mathematical notation to state what happens as the county attempts to '
remove 100% of the pollutants.

a, We evaluate the function as indicated, finding that C(25) = 60, C{50) = 180,
and C(75) = 540. The cost is escalating rapidly. The change from 25% to 50%
brought a $120,000 increase, but the change from 50% to 75% brought a
$360,000 increase!

b. From the context, we need only graph the @) x=100
portion from ¢ = p < 100. For the C-intercept e #
we substitute p = 0 and find C(0) = 0, which a /
seems reasonable as 0% would be removed /
if $0 were spent. We also note there must be 60 (73 5'*“,’,”

a vertical asymptote at x = 100, since this /

x-value causes a denominator of 0. Using
this information and the points from part (a)
produces the graph shown.

¢. As the percentage of pollutants removed
approaches 100%, the cost of the cleanup
skyrockets. Using notation: as p — 100~, C —» oo,

R

P

1

|

|

|

|

|

|

|

|

|

/.f |

(25,60) 4750, 180) |

il |
25 5(1 75 :n;\l
|

bsios il y"=._—-_l§0H'_

Now try Exercises 65 through 70

While not obvious at first, the function C(p) in Example 8 is from the family of
. . 1 . . .
reciprocal functions y = T A closer inspection shows it has the form

. —a —18,000
YT xoh T %00
100 units, reflected across the x-axis, stretched by a factor of 18,000 and shifted 180 units
down (the horizontal asymptote is y = —180). As sometimes occurs in real-world
applications, portions of the graph were ignored due to the context. To see the full
graph, we reason that the second branch occurs on the opposite side of the vertical and
horizontal asymptotes, and set the window as shown in Figure 2.70. After entering
C(p) as Y, on the Ty=7 screen and pressing @D, the full graph appears as shown in
Figure 2.71 (for effect, the vertical and horizontal asymptotes were drawn separately

using the @ (DRAW) options).

1
— 180, showing the graph of y = T is shifted right

Figure 2.71
Figure 2.70 2000
WTHO0L 1= ~LE000M R =100)=-184
“min=a
§Na¥=%aﬂ
=cl= i R

Yimin=-2080 ) -

Ymax=2a80

VYscl=20a

“res=1 LT Y=10240
=2000

Next, we’ll use a root function to model the distance to the horizon from a
given height.
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EXAMPLE 9 The Distance to the Horizon

On a clear day, the distance a person can see from a certain height (the distance to
the horizon) is closely approximated by the root function d(h) = 3.57Vh, where
d(h) represents the viewing distance (in kilometers) from a height of 2 meters
above sea level.

a. To the nearest kilometer, how far can a person see when standing on the
observation level of the John Hancock building in Chicago, Illinois, about 335 m
high?

b. To the nearest meter, how high is the observer’s eyes, if the viewing distance is
130 km?

Solution a. Substituting 335 for & we have

d(k) = 3.57Vh  oiginal function
d(335) = 3.57V335  substitute 335 for i
~ 65.34 result

On a clear day, a person can see about 65 kilometers.
b. We substitute 130 for d(k):

d(h) = 3.57Vh original function
130 = 3.57Vh  substituie 130 for d(4)
36.415 =~ Vh divida by 3.57
1326.052 = h square both sides
If the distance 1o the horizon is 130 km, the observer's eyes are at a

height of approximately 1326 m. Check the answer to part (b) by solving
graphically.

Now try Exercgises 741 through 74

One area where power functions and modeling with regression are used exten-
sively is allometric studies. This area of inquiry studies the relative growth of a
part of an animal in relation to the growth of the whole, like the wingspan of a bird
compared to its weight, or the daily food intake of a mammal or bird compared to
its size,

EXAMPLE 10 Modeling the Food Requirements of Certain Bird Specles

To study the relationship between the
weight of a nonpasserine bird and its Bird t\l'erage li)aily food |:
daily food intake, the data shown in the a welght @) ntake (g)
table was collected (nonpasserine: Common
nonsinging, nonperching birds). pigeon 350 = |-
a. On a graphing calculator, enter the | Ring-necked |
data in L1 and L2, then set an duck 725 30 I
appropriate window to view a Ring-necked
scatterplot of the data, Does a power | Pheasant 1400 70
regression @@ CALC, A:PwrReg | Canadian ‘
seemn appropriate? goose 4525 165
White
swan 9075 240 H
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Solution

E’ D. You've Just seen how
we can solve applications
involving basic rational and
power functlons

b.

c.

d

a.

¢

d.

Use a graphing calculator to find an equation model using a power regression
on the data, and enter the equation in Y, (round values to three decimal
places).

Use the equation to estimate the daily food intake required by a barn owl (470 g),
and a gray-headed albatross (6800 g).

Use the intersection of graphs method to find the weight of a Great-Spotted
Kiwi, given the daily food requirement is 130 g.

After entering the weights in L1 and Figure 2.72

food intake in L2, we set a window that 300

will comfortably fit the data. Using FlLisLz

x € [0, 10,000] and y € [—30, 300] n
produces the scatterplot shown

(Figare 2.72). The data does not appear o
linear, and based on our work in

Example 5, a power function seems
appropriate.

10,000

. To access the power regression option, -30

use @ () (CALC) A:PwrReg. To
three decimal places the equation for Y,
would be 0.493X°%%% (Figure 2.73).

For the barn owl, x = 470 and we find the
estimated food requirement is about =
33.4 g per day (Figure 2,74). For the gray-
headed albatross x = 6800 and the model
estimates about 208.0 g of food daily is
required.

Here we’re given the food intake of the Great-Spotted Kiwi (the output value),
and want to know what input value (weight) was used. Entering Y, = 130,
we’ll attempt to find where the graphs of Y, and Y intersect (it will help to
deactivate Plotl on the ©% screen, so that only the graphs of Y, and Y,
appear). Using @@ (CALC) S:Infersect shows the graphs intersect at
about (3423.3, 130) (Figure 2.75), indicating the average weight of a
Great-Spotted Kiwi is near 3423.3 g (about 7.5 Ib).

Figure 2.73
[PurReg

Figure 2.75
Figure 2.74 200
Wi <47B
33, 36058761 T
vy {62005 L
203, 924997 . f” = 10000
TGS ERON s et
n=34z3. 21088 Y=1z0

Now try Exercises 75 through 78

2-54
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» CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase, Carefully reread the section if needed.

1. Write the following in notational form. As x
becomes an infinitely large negative number, y

approaches 2.
1
3. Given the function g(x) = ———= + 2,
a__ asymptote occurs atx = 3 and

a horizontal asymptote at

5. Discuss/Explain how and why the range of the
reciprocal function differs from the range of the
reciprocal quadratic function. In the reciprocal
quadratic function, all range values are positive.

» DEVELOPING YOUR SKILLS

For each graph given, (a) use mathematical notation
to describe the end-behavior of each graph and
(b) describe what happens as x approaches 1.

1 1

7.Vx =_+2 s'vx=____2
) =~ () = ——
h"l ‘J"

A 3
i I\ |

SI = = $4-3-2-] i"\,_‘(l
L i s b e — . ; 3

! : -u-:._—_—___-';h—i-__..*_
4"“'“””"‘"' _4'-.‘:

2 |

2

R ol

For each graph given, (a) use mathematical notation to
describe the end-behavior of each graph, (b} name the
horizontal asymptote, and (¢) describe what happens as
x approaches —2.

1 =l

9. o) =——=+1 10. gx)=———= +2
( (x +2)° ( (x + 2)°
: 3 I a
LU } v 8
| 1 -4-—-———;——.’,-——-—
712 N A
—l—--ﬂ'-—l——{ ———

~1=6—5-4-3 f 1y \' i
£ i
- |
V=3 Tl

2. For any constant %, the notation “as |x| — +o0, y — k"
is an indication of a asympiote, while
“x =k, [y > +o0” indicates a asymptote,

1
4. The graphof Y, = = has branches in Quadrants [

[
and III. The graph of Y, = = has branches in

Quadrants and

1 1
6. If the graphs of Y, = ; and Y, = — were drawn
X
on the sume grid, where would they intersect? In
what interval(s) is Y, > Y,?

Sketch the graph of each function using transformations
of the parent function (not by plotting points). Clearly
state the transformations used, and label the horizontal
and vertical asymptotes as well as the x- and
y-intercepts (if they exist). Also state the domain

and range of each function.

L 1
ll.f(x)=;—l 12.g(x)=;+2

13. h(x) = lez 14. f(x) = ﬁ

15. g(x) = x_—_z 16. h(x) = —7 -2
17.f(x)=xi2—l lS.g(x)=%+2
19. h(x) = ﬁ 20. f(x) = ﬁ

21. g(x) = , ;'2)2 22, h(x) = _?1 -2
23.f(x)=;:3—2 2. g(x)lez+3

25 h(x) = 1 + fﬁlz—)z 26. g(x) = ~2 + ﬁ
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Identify the parent function for each graph given, then
use the graph to construct the equation of the function
in shifted form. Assume |¢| = 1.

27 ; 28. e
i'f: |
'l Il
[} 13
It B ] B B
-l'l L £
6-§=4-3--1 N ) 2 3 dx L1
el P o IWFﬁJ f23x
s '||| 2
4 ||=3
5 L -4
1g +1"-4
29, A 30. A
I+ i
|I) L [l
1 2 i
6=5-4-3-3 i_i'. 21 4x : .":
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Use the graph shown to Exerclses 33 through 38

complete each statement using

4+
the direction/approach notation.

33 Asx——00, ¥y

34, Asx— o0,y . P § T

35 Asx——-1"y ] E

36. Asx— -1,y . L

37. The line x = —1 is a vertical asymptote, since: as
B T I Ve )

38. The line y = —2 is a horizontal asymptote, since:
asx— __ y—=>___

> WORKING WITH FORMULAS

kmym,

dz
The gravitational force F between two objects with
masses m; and m, depends on the distance 4
between them and some constant £, (a) If the
masses of the two objects are constant while the
distance between them gets larger and larger, what
happens to F7 (b) Let m; and m; equal 1 mass unit
with £ = 1 as well, and investigate using a table of
values. What family does this function belong to?
(¢) Solve for m, in terms of k, m(, d and F.

63. Gravitational attraction: F =

-

| Compare and discuss the graphs of the following
= functions. Verify your answer by graphing both on a
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For each pair of functions given, state which function
increases faster for x > 1, then use the INTERSECT
command of a graphing calculator to find where

{a) flx) = g(x), (b) f(x) > glx), and (¢} fix) < g(x).

39. /() =4 gx)=x . flx)=2tpx)=%
aL fix) =x* g(x) =¥ 42 flx) =22, g(x) = %
43. f(x) = o, glx) = A 4. ) =, g(x) = Pt
45. f(x) = Vx, g(x) = Vx 46, f(x) = Vx, g(x) = ¥
47, f(x) = Vi, glx) = A 48, fix) = o, glx) = Vi

State the domain of the following functions,

49, f(x) = st 50. g(x) = A
51, hi{x) = & 52, 4(x) = *
53. Hx) = Vx 54, s(x) =

Using the functions from Exercises 49-54, identify
which of the following are defined and which are not.
Do not use a calculator or evaluate.

55. 4 f(-2) b fQ@ cg-2) d g2
56. a, 1(0.3) b, A(-03) ¢ g(0.3) d. ¢(—0.3)
57. a, B(-12) b. A-7) o s(~m) d. s0)

58. a. f(—%) b. g(—%) ¢ ¢(—1.9) d. g(0)

graphing calculator.

59, f(x) = X% F(x) = (x + 1) = 2
60. g(x) = ¥: G(x) = (x — 3 + 2
6L p(x) = 5% P(x) = —(x — 2
62. g(x) = A Qo) =24 - 5

For centuries, the velocity v of a bullet of mass m
has been found using a device called a ballistic
pendulum. In one such device, a bullet is fired into
a stationary block of wood of mass M, suspended
from the end of a pendulum. The height % the
pendulum swings after impact is measured, and the
approximate velocity of the bullet can then be
calculated using g = 9.8 m/sec” (acceleration due
to gravity). When a .22-caliber bullet of mass 2.6 g
is fired into a wood block of mass 400 g, their
combined mass swings to a height of 0.23 m, To
the nearest meter per second, find the velocity of
the bullet the moment it struck the wood,

64, Velocity of a bullet: v =
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» APPLICATIONS

65.

66

67.

Deer and predators: By banding deer over a
period of 10 yr, a capture-and-release project
determines the number of deer per square mile in
the Mark Twain National Forest can be modeled by

75
the function D{p) = e where p is the number of

predators present and D is the number of deer. Use
this model to answer the following.

a. As the number of predators increases, what
will happen to the population of deer? Evaluate
the function at D(1), D(3), and D(5) to verify.

b. What happens to the deer population if the
number of predators becomes very large?

¢. Graph the function using an appropriate scale.
Judging from the graph, use mathematical
netation to describe what happens to the deer
population if the number of predators becomes
very small (less than 1 per square mile).

Balance of nature: A marine biology research
group finds that in a certain reef area, the number
of fish present depends on the number of sharks in
the area. The relationship can be modeled by the
20,000 .

_— where F(s) is the fish

population when s sharks are present,

a. As the number of sharks increases, what will
happen to the population of fish? Evaluate the
function at F(10), F(50), and F(200} to verify.

b. What happens to the fish population if the
number of sharks becomes very large?

¢. Graph the function using an appropriate scale.
Judging from the graph, use mathematical
notation to describe what happens to the fish
population if the number of sharks becomes
very small.

function F(s) =

Intensity of light: The intensity { of a light source
depends on the distance of the observer from the
source. If the intensity is 100 W/m® at a distance of
5 m, the relationship can be modeled by the

function /(d) = 25(2)0.
following.

a. As the distance from the lightbulb increases,
what happens to the intensity of the light?
Evaluate the function at /(5}, /(10), and }(15)
to verify.

Use the model to answer the

b. If the intensity is increasing, is the observer
moving away or toward the light source?

68.

69,

70,

161

¢. Graph the function using an appropriate scale.
Judging from the graph, use mathematical
notation to describe what happens to the
intensity if the distance from the lightbulb
becomes very small.

Electrical resistance: The resistance R (in ohms)
to the flow of electricity is related to the length of
the wire and its gauge (diameter in fractions of an
inch). For a certain wire with fixed length, this
relationship can be modeled by the function

0.2
R(d) = Z where R(d) represents the resistance in

a wire with diameter d.

a. As the diameter of the wire increases, what
happens to the resistance? Evaluate the
function at R(0.05), R(0.25), and R(0.5) to
verify.

b. If the resistance is increasing, is the diameter
of the wire getting larger or smaller?

¢. Graph the function using an appropriate scale,
Judging from the graph, use mathematical
notation to describe what happens to the
resistance in the wire as the diameter gets
larger and larger.

Pollutant removal: For a certain coal-burning
power plant, the cost to remove pollutants from
plant emissions can be modeled by

—8000
) =200
cost (in thousands of dollars) to remove p percent of
the pollutants. (a) Find the cost to remove 20%,
50%, and 80% of the pollutants, then comment on
the results; (b) graph the function using an
appropriate scale; and (c) use mathematical notation
to state what happens if the power company
attempts to remove 100% of the pollutants.

- 80, where C(p) represents the

City-wide recycling: A large city has initiated a
new recycling effort, and wanis to distribute
recycling bins for use in separating various
recyclable materials, City planners anticipate the
cost of the program can be modeled by the
—22,000
p — 100
represents the cost (in $10,000) to distribute the
bins to p percent of the population. (a) Find the
cost to distribute bins to 25%, 50%, and 75% of
the population, then comment on the results;

(b) graph the function using an appropriate scale;
and (c) use mathematical notation to state what
happens if the city attempts to give recycling bins
to 100% of the population.

function C{p) = — 220, where C(p)



162

CHAPTER 2 More on Functions

71. Hot air ballooning: If air resistance is neglected,

72.

73

74,

75.

the velocity (in ft/s) of a falling object can be closely
approximated by the function V(s) = 8V/s, where s
is the distance the object has fallen (in feet). A
balloonist suddenly finds it necessary to release
some ballast in order to quickly gain altitude.

(a) If she were flying at an altitude of 1000 ft, with
what velocity will the ballast strike the ground?

(b) If the ballast strikes the ground with a velocity of
225 fi/sec, what was the altitude of the balloon?

River velocities: The ability of a river or stream to
move sand, dirt, or other particles depends on the
size of the particle and the velocity of the river,
This relationship can be used to approximate the
velocity (in mph) of the river using the function
V(d) = 1.77Vd, where d is the diameter (in
inches) of the particle being moved. (a) If a creek
can move a particle of diameter 0,095 in., how fast
is it moving? (b) What is the largest particle that
can be moved by a stream flowing 1.1 mph?

Shoe sizes: Although there may be some notable
exceptions, the size of shoe worn by the average
man is related to his height. This relationship is
modeled by the function S(/) = 0.75h%, where 4 is
the person’s height in feet and S is the U.S. shoe
size. (a) Approximate Denzel Washington's shoe
size given he is 6 ft, 0 in. tall. (b) Approximate
Dustin Hoffman’s height given his shoe size is 9.5.

Whale weight: For a certain species of whale, the
relationship between the length of the whale and the
weight of the whale can be modeled by the funciion
W(i) = 0.031%, where / is the length of the whale
in meters and W is the weight of the whale in metric
tons (1 metric ton = 2205 pounds). (a} Estimate the
weight of a newborn calf that is 6 m long. (b) At 81
metric tons, how long is an average adult?

Gestation periods: The data shown in the table
can be used to study the relationship between the
weight of mammal and its length of pregnancy. Use
a graphing calculator to (a) graph a scatterplot of
the data and (b) find an equation model using a
power regression (round to three decimal places).
Use the equation to estimate (c) the length of
pregnancy of a racoon (15.5 kg) and (d) the weight
of a fox, given the length of pregnancy is 52 days.

Average (estation
Mammal = Weight (kg) {days}
Rat 0.4 24
Rabbit 3.5 50
Armadillo 6.0 51
Coyote 13.1 62
Dog 24.0 64
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76. Bird wingspans: The data in the table explores the

77.

78

relationship between a bird’s weight and its
wingspan. Use a graphing calculator to (a) graph a
scatterplot of the data and (b) find an equation
model using a power regression (round to three
decimal places). Use the equation to estimate (c) the
wingspan of a Bald Eagle (16 1b) and (d) the weight
of a Bobwhite Quail with a wingspan of 0.9 ft.

Weight Wingspan
Bird (Ib) (ft)
Golden Eagle 1.5 6.5
Horned Owl 31 2.6
Peregrine Falcon 33 4.0
Whooping Crane | 17.0 7.5
Raven t.5 2.0

Species-area relationship: To study the relationship
between the number of species of birds on islands in
the Caribbean, the data shown in the table was
collected. Use a graphing calculator to (a) graph a
scatterplot of the data and (b) find an equation model
using a power regression (round to three decimal
places). Use the equation to estimate (¢) the number
of species of birds on Andros (2300 mi?) and (d) the
area of Cuba, given there are 98 such species.

Island Area (mi?)  Species
Great Inagua 600 |16
Trinidad 2000 41
Puerto Rico 3400 47
Jamaica 4500 38
Hispaniola 30,000 82

Planetary orbits: The table shown gives the time
required for the first five planets to make one
complete revolution around the Sun (in years), along
with the average orbital radius of the planet in
astronomical units {1 AU = 92,96 million miles).
Use a graphing calculator to (a) graph a scatterplot of
the data and (b) find an equation model using a
power regression (round to four decimal places). Use
the equation to estimate (c) the average orbital radius
of Saturn, given it orbits the Sun every 29.46 yr, and
(d) estimate how many years it takes Uranus to orbit
the Sun, given it has an average orbital radius of

19.2 AU,

Planet Years Radius
Mercury 0.24 0.39
Venus 0.62 072
Earth 1,00 1.00
Mars .88 1.52
Jupiter 11.86 5.20




2-59 Section 2.5 Piecewise-Deflned Functions 163

» EXTENDING THE CONCEPT

1 .
79. Consider the graph of f(x) = -- once again, and the O.f PN funcnpns‘have Depth  Temp
Soox significant applications. For (meters)  (°C)
X by f(x) rectangles mentioned in the Worthy of example, the temperature of
Note on page 149, Calculate the area of each ocean water depends on several 2> ledy
rectangle formed for x € {1, 2, 3,4, 5, 6}. What do factors, including salinity, 250 9.0
. . 1 latitude, depth, and densit 500 6.0
t ? R = — d ¥ p 1 y—
you notice? Repeat the exercise for g(x) Z an However, between depths of 250 50
the x by g(x) rectangles. Can you detect the pattern 125 m and 2000 m, ocean 1000 4.4
formed here? temperatures are relatively 1250 3.8
=] 80, All of the power functions presenied in this section P r;dlctable, ssingigatedloy the 1500 3.1
it >t .= data shown for tropical oceans
had positive exponents, but the definition of these i1 the table. U hi 1750 2.8
types of functions does allow for negative exponents in the table. Ls¢ 2 graphing
y calculator to find the power 2000 25

as well. In addition to the reciprocal and reciprocal

) =1 —a regression model and use it to estimate the water
square functions (y = x~ " and y = x~ “}, these Lypes

temperature at a depth of 2850 m.

» MAINTAINING YOUR SKILLS

81. (1.4) Solve the equation for v, then sketch its graph Zeppelin, 9.4), (The Stones, 9.8)}. Is the relation
using the slopef/intercept method: 2x + 3y = 15, (group, rating) as given, also a function? State why

82. (1.3) Using a scale from 1 (lousy) to 10 (great), giywhygnot.

Charlie gave the following ratings: {(The Beatles, 83, (1.5) Solve for c: E = mc’.
9.5}, (The Stones, 9.6), (The Who, 9.5), (Queen, 9.2),
(The Monkees, 6.1). (CCR, 9.5), (Aerosmith, 9.2),
(Lynyrd Skynyrd, 9.0), (The Eagles, 9.3), (Led

84. (2.3) Use a graphing calculator to solve
k=2l+1=-2x+1+3.

v A8 Piecewise-Defined Functions

LEARNING OBJECTIVES Most of the functions we’ve studied thus far have been smooth and continuous.

in Section 2.5 you will see Although “smooth” and “continuous™ are defined more formally in advanced
how wa can: courses, for our purposes smooth simply means the graph has no sharp turns or
jagged edges, and continwous means you can draw the entire graph without lifting

[ A. State the equation, your pencil, In this section, we study a special class of functions, called piecewise-
domain, and range of defined functions, whose graphs may be various combinations of smooth/not

a piecewise-defined smooth and continuous/not continuous, The absolute value function is one exam-
function from its graph ple (see Exercise 31). Such functions have a tremendous number of applications in

) 8. Graph functions that are the real world.
piecewise-defined

O C. Solve applications
involving piecewise-
defined functions
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A. The Domaln of a Plecewlse-Defined Function

For the years 1990 to 2000, the American bald eagle remained on the nation’s endan-
gered species list, although the number of breeding pairs was growing slowly. After
2000, the population of eagles grew
at a much faster rate, and they were
removed from the list soon after-
ward. From Table 2.3 and plotted
points modeling this growth (see
Figure 2.76), we observe that a linear
model would fit the period from
1992 to 2000 very well, but a line
with greater slope would be needed
for the years 2000 to 2006 and (per-
haps) beyond.

Figure 2.78
10,000
9,000
8,000
Table 2.3 E.
% 7,000
Year  Bald Engle Year | Bald Eagle E
(1990~ 0) Breeding Pairs (1990--10)  Breeding Palrs % 6,000
2 3700 10 6500 ¥ som
4 4400 12 7600 E
- 4,000
6 5100 14 . 8700
8 5700 16 9800 3,000
Source: www.fws.gov/midwest/eagle/population %
qa 2 4 & B 10 12 14 16 18
t (years since 1990)
WORTHY OF NOTE

For the years 1992 to 2000, we can
estimate the growth in breeding
palrs 4442 sing the points (2, 3700)
and (10, 8500) In the siope formula,
The result is 44, or 350 palrs per
year. For 2000 to 2008, using (10,
€500} and {18, 9800) shows the rate
of growth Is significantly larger:
4o = 449 or 550 palrs per year.

The combination of these two lines would be a single function that modeled the
population of breeding pairs from 1990 to 2006, but it would be defined in two pieces.
This is an example of a plecewise-defined function.

The notation for these functions is a large “left brace” indicating the equations it
groups are part of a single function. Using selected data points and techniques from
Section 1.4, we find equations that could represent each piece are p(z) = 350¢ + 3000
for0 < ¢t =< 10and p(r) = 550t + 1000 for ¢ > 10, where p(#) is the number of breed-
ing pairs in year 7, The complete function is then written:

function name  function pieces  domain of each piece

= [350 3000, 2510
PU) = 550 + 1000, £> 10

In Figure 2,76, note that we indicated the exclusion of ¢ = 10 from the second piece of
the function using an open half-circle.
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EXAMPLE 1

Solution

Q’ A. You've just seen how
we can state the equation,
domain, and range of a
plecewise-defined function
from its graph

EXAMPLE 2

Solution

Section 2.5 Plecewlse-Defined Functions 165

Writing the Equation and Domaln of a Plecewlse-Defined Function

The linear piece of the function shown has an equation
of y = —2x + 10. The equation of the quadratic
piece isy = —x* + 9x — 14. y |
a. Use the correct notation to write them as a
single piecewise-defined function and state the ¥

domain of each piece by inspecting the graph, JE |
b. State the range of the function, ,f} |
a. From the graph we note the linear portion is HET I l:

defined between 0 and 3, with these endpoints 2 \

included as indicated by the closed dots, The \-. |

domain here is 0 = x = 3. The quadratic 0 maa. el

portion begins at x = 3 but does not include 3,
as indicated by the half-circle notation. The equation is

function name  function pieces domain :
—2x 4+ 10 O0=x=3

= ' |
1) {—x2+9x—14, I<x=T

b. The largest y-value is 10 and the smallest is zero. The range is y € [0, 10]. |

Now try Exerclses 7 and 8

Piecewise-defined functions can be composed of more than two pieces, and can
involve functions of many kinds,

B. Graphing Plecewise-Deflned Functions

As with other functions, piecewise-defined functions can be graphed by simply
plotting points. Careful attention must be paid to the domain of each piece, both to
evaluate the function correctly and to consider the inclusion/exclusion of endpoints. In
addition, try to keep the transformations of a basic function in mind, as this will often
help graph the function more efficiently,

Graphing a Piecewlse-Defined Function

Evaluate the piecewise-defined function by noting the effective domain of each piece,
then graph by plotting these points and using your knowledge of basic functions.

h(x)_{—x—z, ~5=sx< —1
2va+1-1, x=-1
The first piece of £ is a line with negative slope, while the second is a transformed

square root function. Using the endpoints of each domain specified and a few
additional points, we obtain the following:

Fori(x) = —x ~ 2, -5 sx < —1, Forh(x} =2Vx+ 1= 1,x= —1,

x h(x) X h(x) "

—5 3 ~—1 -1 :
3 I 0 1

=1, 0 {=1) 3 3
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EXAMPLE 3

Solution

After plotting the points from the first piece, we h(x)
connect them with a line segment noting the left .
endpoint is included, while the right endpointis P
not (indicated using a semicircle around the N '
point}. Then we plot the points from the second L CURY, 4
piece and draw a square root graph, noting the : A': s x
left endpoint here #s included, and the graph

rises to the right. From the graph we note the

complete domain of & is x € [—35, o), and the

rangeisy € [—1, co). 5

Now try Exercises 9 through 12

Most graphing calculators are able to graph piecewise-defined functions. Consider
Example 3.

Graphing a Piecewise-Defined Function Using Technology

+ 5, —5=x<2
Graph the function f(x) = {x 5 SEx

— 42 on a graphing calculator
and evaluate f(2). (x—4y +3,x=2

Figure 2.77
Both “pieces” are well known—the first is a line 10

with stope 7 = 1 and y-intercept (0, 5). The second [V1=#+5 ,!’]I'qf//l/

is a parabola that opens upward, shifted 4 units to /,‘ 9
u_lﬂ |

the right and 3 units up. If we attempt to graph
fG)using Y, = X+ Sand Y, = (X —4)* +3 ~10 s

as they stand, the resulting graph may be |~

difficult to analyze because the pieces overlap ]
and intersect (Figure 2.77). To graph the functions  [#=1 V=6
we must indicate the domain for each piece, -10

separated by a slash and enclosed in parentheses.
For instance, for the first piece we enter =

’ 2 Flak
Y, = X +5/(X=—SandX < 2),andforthe  |\p3 ByeBrcns -5 an
second, Y, = (X — 4)” + 3/(X = 2) (Figure 2.78). | {23 -
The slash looks like (is) the division symbol, butin |s\YzB(R—4) 43 (K=
this context, the calculator interprets it as a means

Flgure 2.78

of separating the function from the domain. The “'1‘1':: 3=
inequality symbols are accessed using the ::;1, ; —

W (TEST) keys. As shown for Y, compound
inequalities must be entered in two parts, using the logical connector “and™: T
{ (LOGIC) 1:and. The graph is shown in Figure 2.79, whete we see the function is
linear for x € [—35, 2) and quadratic for x € [2, co). Using the @y (TABLE) |
feature reveals the calculator will give an ERR: (ERROR) message for inputs ontside
the domains of Y and Y, and we see that fis defined for x = 2 only for Y,: f(2) =7
(Figure 2,80).

Flgure 2.79
10 Figure 2.80
W A=R+E/NZ ~E and H{E)I.:‘ e Y Y2
X 0 3 ERROR
1 s EE ERKDR
o ’.h"u'{ i B ERAOR
—10 : sssai 1 ik 5.5 EREOR
z EREDR | 7
ERROE | 5.2%
[ & ERROR | &
u=1 v=5 =3
—10

Now try Exercises 13 and 14
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EXAMPLE 4

Solution
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As an alternative to plotting points, we ¢an graph each piece of the function using
transformations of a basic graph, then erase those parts that are outside of the corre-
sponding domain. Repeat this procedure for each piece of the function. One interest-
ing and highly instructive aspect of these functions is the opportunity to investigate
restrictions on their domain and the ranges that result.

Plecewlse and Continuous Functlons

Graphing a Piecewise-Defined Function
Graph the function and state its domain and range:

C[-(x-3P+12, 0<x=6
f(x)_{ 3, x> 6

The first piece of fis a basic parabola, shifted three units right, reflected across the
x-axis (opening downward), and shifted 12 units up. The vertex is at (3, 12) and the
axis of symmetry is x = 3, producing the following graphs.

1. Graph first piece of f
(Figure 2.81)

2. Erase portion outside domain.
of 0 < x = 6 (Figure 2.82).

Figure 2.81 Figure 2.82

- . .

] 123456778910k S1 | 12345678 0910x

The second function is simply a horizontal line through (0, 3).

3. Graph second piece of f 4. Erase portion outside domain

(Figure 2.83). of x > 6 (Figure 2.84).
Figure 2.83 Figure 2.84
¥ y
1 o 12 o~
4 N\ : ' / “\

! \
wf o/ \ w| \

I 123456786510x -1 123485678 0810x

The domain of fis x € (0, co), and the corresponding range is y € [3, 12].

Now try Exercises 15 through 18
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Piecewlse and Discontlnuous Functlons

Notice that although the function in Example 4 was piccewise-defined, the graph was
actually continnous— we could draw the entire graph without lifting our pencil. Piece-
wise graphs also come in the discontinuous variety, which makes the domain and range
issues all the more important,

EXAMPLE § Graphing a Discontinuous Piecewise-Defined Function
Graph g(x) and state the domain and range:

()_{—%x+6, 0=x=4
& -6 +10, 4<x=9

Solution The first piece of g is a line, with y-intercept (0, 6) and slope 4% = —1,

1. Graph first piece of g 2. Erase portion outside domain,
(Figure 2.85) of 0 = x = 4 (Figure 2.86).
Figure 2.85 Flgure 2.86
¥ ¥
10 10
g ]
Tm__‘_k i fifhe_
| e | °
o
1 23 4 5 6 71 8§ % 10X 123456?89!036

The second is an absolute value function, shifted right 6 units, reflected across
the x-axis, then shifted up 10 units.

WORTHY OF NOTE 3. Graph second piece of g 4. Erase portion outside domain

RSOl raph placewise-genned (Figure 2.87). of 4 << x = 9 (Figure 2.88),

functions, kesp in mind that they

are functions and the end result Flgure 2.87 Figure 2.88
must pass the vertical line test. This y y
is especially important when we are 10 10
drawing each piece as a complete I
graph, then erasing portions " N\, 8 : N\
outsids the effective domain. e

e, < - 8%,

gl By 4 =

2 ¥

123456789 10X ' | 234567809 loX

Note that the left endpoint of the absolute value portion is not included
(this piece is not defined at x = 4), signified by the open dot. The result is
a discontinuous graph, as there is no way to draw the graph other than by
“jumping” the pencil from where one piece ends to where the next begins.
Using a vertical boundary line, we note the domain of g includes all values
between 0 and 9 inclusive: x € [0, 9]. Using a horizontal boundary line
shows the smallest y-value is 4 and the largest is 10, but no range values
exist between 6 and 7. The range is y € [4,6] U [7, 10].

Now try Exerclses 19 and 20
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EXAMPLE 6
Solution
WORTHY OF NOTE

The discontinulty illustrated here s
called a removable discontinuity, as
the dlscontinuity can he removed
by redefining a single point on the
function. Note that after factoring
the first piecs, the denominatoris a
factor of the numerator, and writing
the rasult In lowest terms gives
hix) = WHBUE=l — 1 2,0 £ 2,
This is precisely the equation of the
line in Figure 2.89 [y = x + 2.

EXAMPLE 7

Solutlon

Section 2.5 Plecaswise-Deflned Functions 169

Graphing a Discontinuous Function

The given piecewise-defined function is not continuous. Graph A(x) to see why,
then comment on what could be done to make it continuous,

P-4
. 2 '
Y _ 2 X F

1, x=2 ‘i

The first piece of & is unfamiliar to us, so we elect to graph it by plotting points,
noting x = 2 is outside the domain. This produces the table shown. After
connecting the points, the graph turns out to be a straight line, but with no
corresponding y-value for x = 2. This leaves a “hole” in the graph at (2, 4), as
designated by the open dot (see Figure 2.89).

h(x) =

Flgure 2.89 Figure 2.90
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The second piece is pointwise-defined, and its graph is simply the point (2, 1)
shown in Figure 2.90. It’s interesting to note that while the domain of  is all real
numbers (& is defined at all points), the range is y € (— o0, 4) U (4, 00) as the
function never takes on the value y = 4, In order for & to be continuous, we would
need to redefine the second piece asy = 4 when x = 2,

Now try Exercises 21 through 26

To develop these concepts more fully, it will help to practice finding the equation
of a piecewise-defined function given its graph, a process similar to that of Example 10
in Section 2.2,

Determining the Equatlon of a Piecewise-Defined Function

Determine the equation of the piecewise-defined %
function shown, including the domain for each piece.

By counting 42 from (=2, —5) to (1, 1), we find the / \
linear portion has slope m = 2, and the y-intercept j |
must be (0, —1). The equation of the line is = :

y = 2x — 1. The second piece appears to be a \
parabola with vertex (h, k) at (3, 5). Using this
vertex with the point (1, 1} in the general form

y=alx - h)2 + k gives 4L |
y=alx—h} +k
=a(l -3 +5
—4 = a(_z)z
—4 = 4q

-1=a
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& B. You've just seen how
we can graph functions that
are piecewlse-defined

EXAMPLE 8

Solution

The equation of the parabola is y = —(x — 3) + 5. Considering the domains
shown in the figure, the equation of this piecewise-defined function must be

(x)_{i.’x—l, —2=x<|
P —(x — 3)* + 5, xz1

Now try Exercises 27 through 30

C. Applications of Piecewise-Defined Functions

The number of applications for piecewise-defined functions is practically limitless. It
is actually fairly rare for a single function to accurately model a situation over a long
period of time. Laws change, spending habits change, and technology can bring abrupt
alterations in many areas of our lives. To accurately model these changes often requires
a piecewise-defined function.

Modeling with a Piecewise-Defined Function

For the first half of the twentieth century, per capita spending on police protection
can be modeled by S{r) = 0.54¢ + 12, where S(¢) represents per capita spending on
police protection in year ¢ (1900 corresponds to year 0). After 1950, perhaps due to
the growth of American cities, this spending greatly increased: S(f) = 3.65¢ — 144,
Write these as a piecewise-defined function S(r), state the domain for each piece,
then graph the function. According to this model, how much was spent (per capita)
on police protection in 2000 and 20107 How much will be spent in 20147

Source: Data taken from the Statistical Abstract of the Uniled States for various years.

function name  function pieces  effective domain

S() = {0.54: +12, 0=¢=50
1365t — 144, 1> 50
Since both pieces are linear, we can graph each part 20 50 y
using two points. For the first function, S(0) = 12 0 /
and 5(50) = 39. For the second function S(50) =~ 39 A/
and S(80) = 148. The graph for each piece is shown 16 (80, 148)
in the figure. Evaluating § at r = 100: - /
S() = 3.65t — 144 "
§(100) = 3.65(100) — 144 " Lt s
=365 — 144 = .
= 221 0 10 20 30 40 50 60 70 8O 9?119[3]11)003

About $221 per capita was spent on police protection in the year 2000, For 2010, the
model indicates that $257.50 per capita was spent: ${110) = 257.5. By 2014, this
function projects the amount spent will grow to S(114) = 272,1 or $272.10 per capita.

Now try Exercises 33 through 44

Step Functions

The last group of piecewise-defined functions we’ll explore are the step functions, so
called because the pieces of the function form a series of horizontal steps. These func-
tions find frequent application in the way consumers are charged for services, and have
several applications in number theory. Perhaps the most common is called the greatest
integer function, though recently its alternative name, floor function, has gained
popularity (see Figure 2.91). This is in large patt due to an improvement in notation
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EXAMPLE 9

Solution

H C. You've just seen how
we can sclve applications
involving piecewise-defined
functions
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and as a better contrast to ceiling functions. The floor function of a real number x, de-
noted f(x) = | x] or [x] (we will use the first), is the largest integer less than or equal
to x. For instance, |5.9] = 5,|7] = 7,and | ~34] = —4.

In contrast, the ceiling function C(x) = [x] is the smallest integer greater than or
equal to x, meaning [5.9] = 6,[7] = 7, and [ —3.4] = —3 (see Figure 2.92). In sim-
ple terms, for any noninteger value on the number line, the floor function returns the
integer to the left, while the ceiling function returns the integer to the right. A graph of
each function is shown.

Flgure 2.91 Figure 2.92
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One common application of floor functions is the price of theater admission, where
children 12 and under receive a discounted price. Right up until the day they're 13, they
qualify for the lower price: | 12322 | = 12. Applications of ceiling functions would
include how phone companies charge for the minutes used (charging the 12-min rate for
a phone call that only lasted 11.3 min: [ 11.3} = 12), and postage rates, as in Example 9.

Modeling Using a Step Function

In 2009 the first-class postage rate for large envelopes sent through the U.S. mail was
88¢ for the first ounce, then an additional 17¢ per ounce thereafier, up to 13 ounces.
Graph the function and state its domain and range. Use the graph to state the cost of
mailing a report weighing (a) 7.5 oz, (b) 8 oz, and (c) 8.1 oz in a large envelope.

The 88¢ charge applies to letiers weighing between 0 oz and 1 oz. Zero is not
included since we have to mail something, but 1 is included since a large envelope
and its contents weighing exactly one ounce still costs 88¢. The graph will be a
horizontal line segment.

The function is defined for all
weights between 0 and 13 oz, excluding
zero and including 13: x € (0, 13].

304

|
The range consists of single outputs e |
corresponding to the step intervals: 255 A |
R € {88,105, 122,...,275,292}. 241 o> I
a. The cost of mailing a 7.5-0z g™ =
report is 207¢. g m o—e
b. The cost of mailing an 8.0-0z © e R
report is still 207¢. ’

¢. The cost of mailing an §.1-0z
report is 207 + 17 = 224¢,
since this brings you up to the
next step.

LS *

"

1 2 3 4 5 6 7 & 9 101 1213
Weight (oz)

Now try Exercises 45 through 48
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> CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. A function whose entire graph can be drawn 2. The input values for which each part of a piecewise
without lifting your pencil is calleda function is defined is the _________ of the function,
function.

3. Agraphiscalled —_____ if it has no sharp turns 4. When graphing 2x + 3 over a domain of x > 0,
or jagged edges. weleavean . dot at (0, 3).

5. Discuss/Explain how to determine if a piecewise- 6. Discuss/Explain how it is possible for the domain
defined function is continuous, without having to of a function to be defined for all real numbers, but
graph the function. Illustrate with an example. have a range that is defined on more than one

interval. Construct an illustrative example,

» DEVELOPING YOUR SKILLS

For Exercises 7 and 8, (a) use the correct notation to 2x+3 x<0
write them as a single piecewise-defined function and 10 Hx) =<2+ 1 0=x<2
state the domain for each piece by inspecting the graph, 5 >2

then (b) state the range of the function.

H(—3), H(—3), H(—0.001), H(1), H(2), and H(3

. 5 x < -3
o p L. px)=3x* -4 -3=x=3
\ Zx+1 x>3
s e P(=5). p(=3). p(=2). p(0), p(3), and p(5)
A y=3 < -1
L] ‘ 12, g(x) = { 2 l=x<2
P 43x—2 x=22
.Y = -L5X-5+10.Y,=-VX-7+5 g(—3), q(—1), 4(0), 9(1.999), ¢(2), and g(4)
. ' Graph each piecewise-defined function using a graphing
) /"\ = calculator, Then evaluate eachatx = 2and x = 0,
S i x+2 —-6=x=2
/ Ui 13. =
s LE2R Px) {Z[x -4 x>2
> Vx+4 —-d=x=0
T 14. q(x) = { X X
k-2 0<x=7
Evaluate each piecewise-defined function as indicated

Graph each piecewise-defined function and state its
domain and range. Use transformations of the toolbox
-2 x< -2 functions where possible.

9 hx) =MW -2=x<3 fe _{—(x—l)2+5 —2=x=4
5 x=3 80 = 0r - 12 x> 4
h(—5), h(—2), h(—3), 1(0), £(2.999), and #(3) Ly + 1 Y =0
i {(x—2)2—3 0<x=<5

(if possible).
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—-x+3 x <1 -1
17. H(x} = # 1
() —x—-5+6 1=x<9 25 f(x)= ¢ x — 1 !
3 =
x=1 x<2 9 x=1
18. =
W) {(x—?,)z 2= 6 4x — 2
x#F -2
-x—3 x<-3 26, f(x) = ¢ x+2
19. f(x) =9 - ¥ —3=x<2 ¢ x=-2
4 x=2 Determine the equation of each piecewise-defined
12 < -3 function shown, including the domain for each piece.
2x i Assume all pieces are toolbox functions.
20 A(x)= ¢ - +5 =3sx=<35 -
3, .f'x — S X > 5 270 « Ll 2 I § ¥
1 4
b+l x#4 / h:
21. = ] ~
p(X) {2 =4 < = .L-' : = 5
1 3 ~
sx—1y -1 x#3
2. )= | v
9x) {—2 x=3 : K
Each of the following functions has a removable
discontinuity, Graph the first piece of each function, 29, AY i 30. 4
then find the value of ¢ so that a continuous function *\I '
results. ".,\ i
2 \ al L
X - 9 =X | .} J,’ €y =y 4 5
# -3 3
B fxy=4x+3 \
¢ x=-3 b4 L
#-3x-10 ot
24, f(x) = x=35
c x=

» WORKING WITH FORMULAS

—x x<0 32. Sand dune function:
31. Definition of absolute value: |x| = {x =0 -2 +1 1=x<3

f)=¢=|x—4|+1 3I=x <S5

it te value functi b
The absolute value function can be stated as a —|x—2k|+1 W—1Sx<2k+LforkEN

piecewise-defined function, a technique that is

sometimes useful in graphing variations of the There are a number of interesting graphs that can
function or solving absolute value equations and be created using piecewise-defined functions, and
inequalities. How does this definition ensure that these functions have been the basis for more than
the absolute value of a number is always positive? one piece of modern art. (a) Use the descriptive
Use this definition to help sketch the graph of name and the pieces given to graph the function f.
f(x) = & Discuss what you notice. Is the function accurately named? (b) Use any

combination of the toolbox functions to explore
your own creativity by creating a piecewise-
defined function with some interesting or appealing
characteristics. {¢) Fory = —|x — 2] + 1, solve for
xin terms of y.
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> APPLICATIONS

For Exercises 33 and 34, (a) write the information given as
a piecewise-defined function, and state the domain for each
piece by inspecting the graph, (b} Give the range of each.

33. Results from advertising:

34

g 3.

S0
Due io heavy advertising, )
initial sales of the Lynx
Digital Camera grew very ity
rapidly, but started to A AR
decline once the advertising :
blitz was over. During the
advertising campaign, sales
were modeled by the function () = —t2 + 6,
where S(r) represents hundreds of sales in month ¢.
However, as Lynx Inc. had hoped, the new product
secured a foothold in the market and sales leveled
out at a steady 500 sales per month.

Decline of newspaper publishing: From the turn
of the twentieth century, the number of newspapers
(per thousand population) grew rapidly until the
1530s, when the growth slowed down and then
declined. The years 1940 to 1946 saw a “spike” in
growth, but the years 1947 to 1954 saw an almost
equal decline. Since 1954 the number has
continued to decline, but at a slower rate.

Nt
ElL]

kLU
(a8,328)

190 TR IS4, A2R)

0

0 ..'|-1 238)

20

|

W40 60 80 1D
1 (years since 19000

The number of papers N per thousand population for
each period, respectively, can be approximated by

Ni(#) = —0.137 + 8.1t + 208,
Ny(f) = —5.75| — 46| + 374, and

N3(f) = ~2.451 + 460.

Source: Data from the Statistical Abstract of the United States, various years;
data from The First Measured Cenlury, The AEY Press, Caplow, Hicks, and
Wattenbarg, 2001.

Families that own stocks: The percentage of
American houscholds that own publicly traded
stocks began rising in the early 1950s, peaked in
1970, then began to decline until 1980 when there
was a dramatic increase due to easy access over the
Internet, an improved economy, and other factors,
This phenomenon is modeled by the function P(f),

37

w
&
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where P(r) represents the percentage of households
owning stock in year ¢, with 1950 corresponding to

year 0.

—-0.03% + 1.28¢ + 1.68
P(r) = { 0.03° + 1.28¢

1,89 — 435

a. According to this model, what percentage of
American households held stock in the years
1953, 1965, 1975, 1985, and 19957 If this
pattern continues, what percentage held stock
in 2005? What percent will hold stock in
20157

b. Why is there a discrepancy in the outputs of
each piece of the function for the year 1980
(+ = 30)? According to how the function is
defined, which output should be used?

Source: 2004 Statistical Abstract of the United States, Table 1204; various
other years.

0=¢t=30
r > 30

Dependence on foreign oil: America’s
dependency on foreign oil has always been a “hot”
political topic, with the amount of imported oil
fluctuating over the years due to political climate,
public awareness, the economy, and other factors,
The amount of crude oil imported can be
approximated by the function given, where A(f)
represents the number of barrels imported in year ¢
(in billions), with 1980 corresponding to year 0,

0.0477 — 038t + 1.9 0=1r<8§
—0.075# + 1495t ~ 5265 8=<r=11
0.133¢ + 0,685 > 11

a. Use A(p) to estimate the number of barrels
imported in the years 1983, 1989, 1995, and
2005. If this trend continues, how many barrels
will be imported in 20157

b. What was the minimum number of barrels
imported between 1980 and 1988?

Source: 2004 Sialistical Abstract of the iUnited Stales, Table 897; various
other years,

AQr) =

Energy rationing: In certain areas of the United
States, power blackouts have forced some counties
to ration electricity. Suppose the cost is $0.09 per
kilowatt (kW) for the first 1000 kW a household
uses. After 1000 kW, the cost increases to 0.18 per
kW. (a) Write these charges for electricity in the
form of a piecewise-defined function C(k), where
C(h) 1s the cost for A kilowatt hours. Include the
domain for each piece. Then (b) sketch the graph
and determine the cost for 1200 kW.
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38. Whater rationing: Many southwestermn states have a

39

40

41.

litnited water supply, and some state governments try
to control consumption by manipulating the cost of
water usage. Suppose for the first 5000 gal a
household uses per month, the charge is $0.05 per
gallon. Once 5000 gal is used the charge doubles to
$0.10 per gallon. {a) Write these charges for water
usage in the form of a piecewise-defined function
C(w), where C(w) is the cost for w gallons of water.
Include the domain for each piece. Then (b) sketch
the graph and determine the cost to a household
that used 9500 gal of water during a very hot
summer month.

Pricing for natural gas: A local gas company
charges $0.75 per therm for natural gas, up to 25
therms. Once the 25 therms has been exceeded, the
charge doubles to $1.50 per therm due to limited
supply and great demand. (a} Write these charges
for natural gas consumption in the form of a
piecewise-defined function C(#), where C(¢) is the
charge for ¢ therms. Include the domain for each
piece. Then (b) sketch the graph and determine the
cost to a houschold that used 45 therms during a
very cold winter month.

Multiple births:
The number of
multiple births has
steadily increased
in the United
States during the
twentieth century
and beyond.
Between 1985 and
1995 the number
of twin births could be modeled by the function
T(x) = —0.21x% + 6.1x -+ 52, where x is the
number of years since 1980 and T is in thousands.
After 1993, the incidence of twins becomes more
linear, with T{(x) = 4.53x + 28.3 serving as a better
model. (a) Write the piecewise-defined function
modeling the incidence of twins for these years.
Include the domain of each piece. Then (b} skeich
the graph and use the function to estimate the
incidence of twins in 1990, 2000, and 2005. If this
trend continued, how many sets of twins were born
in 20107

Source: Nationaf Vital Stalistics Report, Vot. 50, No. 5, February 12, 2002

U.S. military expenditures: Except for the year
1991 when military spending was cut drastically, the
amount spent by the U.S. government on national
defense and veterans’ benefits rose steadily from
1980 to 1992, These expenditures can be modeled
by the function S(r) = —1.35¢ + 31.9¢ + 152,
where S(2) is in billions of dollars and 1980
corresponds to ¢ = 0.

42.

45,
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From 1992 to 1996 this spending declined, then
began to rise in the following years. From 1992 to
2002, military-related spending can be modeled by
S(r) = 2.5¢ — 80.6r + 950.

Source; 2004 Statistical Abstract of the United Siates, Table 492

(a) Write S(7) as a single piecewise-defined
function. Include stating the domain for each piece.
Then (b) sketch the graph and use the function to
estimate the amount spent by the United States in
2003, 2008, and 2012 if this trend continues.

Amusement arcades: At a local amusement
center, the owner has the SkeeBall machines
programmed to reward very high scores. For scores
of 200 or less, the function T(x) = {5 models the
number of tickets awarded (rounded to the nearest
whole). For scores over 200, the number of tickets
is modeled by T(x)} = 0.001x* — 0.3x + 40,

(a) Write these equation models of the number of
tickets awarded in the form of a piecewise-defined
function. Include the domain for each piece. Then
(b) sketch the graph and find the number of tickets
awarded to a person who scores 390 points.

Phone service charges: When it comes to phone
service, a large number of calling plans are
available. Under one plan, the first 30 min of any
phone call costs only 3.3¢ per minute. The charge
increases to 7¢ per minute thereafter. {a) Write this
information in the form of a piecewise-defined
function. Include the domain for each piece. Then
(b) sketch the graph and find the cost of a 46-min
phone call.

. Overtime wages: Tara works on an assembly line,

putting together computer monitors. She is paid
$9.50 per hour for regular time (0, 40 hr], $14.25
for overtime (40, 48 hr}, and when demand tor
computers is high, $19.00 for double-overtime

(48, 84 hr]. (a) Write this information in the form
of a simplified piecewise-defined function. Include
the domain for each piece. (b) Then sketch the
graph and find the gross amount of Tara’s check for
the week she put in 54 hr.

Admission prices: At Wet Willy’s Water World,
infants under 2 are free, then admission is charged
according to age. Children 2 and older but less than
13 pay $2, teenagers 13 and older but less than 20
pay $5, adults 20 and older but less than 65 pay $7,
and senior citizens 65 and older get in at the
teenage rate. (a) Write this information in the form
of a piecewise-defined function. Include the
domain for each piece. Then (b) sketch the graph
and find the cost of admission for a family of nine
which includes: one grandparent (70), two adults
(44/45), 3 teenagers, 2 children, and one infant.
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46, Demographics: One common use of the floor
function y = |x] is the reporting of ages, As of
2007, the record for longest living human is
122 yr, 164 days for the life of Jeanne Calment,
formerly of France. While she actually lived
x = 1224% years, ages are normally reported
using the floor function, or the greatest integer
number of gears less than or equal to the actual
age: | 12238 | = 122 years. (a) Write a function
A(r) that gives a person’s age, where A(?) is the
reported age at time £ (b) State the domain of the
function (be sure to consider Madame Calmeni’s
record). Report the age of a person who has been
living for (c) 36 years; (d) 36 years, 364 days;
(e} 37 years; and (f) 37 years, | day.

47. Postage rates: The postal charge function from
Example 9 is simply a transformation of the basic
ceiling function y = [x]. Using the ideas from
Section 2.2, (a} write the postal charges as a step
function C(w), where C(w) is the cost of mailing
a large envelope weighing w ounces, and (b) state
the domain of the function. Then use the function
to find the cost of mailing reports weighing:
(¢)0.7 0z, (d) 5.1 oz, (&) 5.9 0z; (f) 6 0z, and
(g) 6.1 oz,

» EXTENDING THE CONCEPT

51. You’ve heard it said, “any number divided by itself
is one.” Consider the functions f(x) = 52, and
g(x) = B2, Are these functions continuous?

» MAINTAINING YOUR SKILLS

53. (Appendix A.5) Solve:

3 e 30

xi=12 -4

54. (Appendix A.5) Compute the following and write the
result in lowest terms:

A -ax-12
x—3

2x ~ 6
P +5+6

55. (1.4) Find an equation of the line perpendicular to
3x + 4y = 8, and through the point (0, —2). Write
the result in slope-intercept form.

+ (3x — 6)

2-72

48. Cell phone charges: A national cell phone
company advertises that calls of 1 min or less do
not count toward monthly usage. Calls lasting
longer than 1 min are calculated normally using a
ceiling function, meaning a call of 1 min, 1 sec will
be counted as a 2-min call, Using the ideas from
Section 2.2, (a) write the cell phone charges as a
piecewise-defined function C(m), where C(m) is
the cost of a call lasting m minutes, and include the
domain of the function. Then (b) graph the
function, and (¢} use the graph or function to
determine if a cell phone subscriber has exceeded
the 30 free minutes granted by her calling plan for
calls lasting 2 min 3 sec, 13 min 46 sec, 1 min 5
sec, 3 min 59 sec, and 8 min 2 sec, (d) What was
the actual nsage in minutes and seconds?

49. Combined absolute value graphs: Carefully
graph the function 2(x) = |x — 2| — |x + 3| using a
table of values over the interval x € [ =5, 5]. Is the
function continuous? Write this function in
piecewise-defined form and state the domain for
each piece.

50

+

Combined absolute value graphs: Carefully
graph the function H(x) = |x — 2| + |x + 3| using
a table of values over the interval x € [—5,5). Is
the function continuous? Write this function in
piecewise-defined form and state the domain for
each piece.

52. Find a linear function A(x) that will make the
function shown a continuous function. Be sure to

include its domain,

x° x <
f(x) = § Alx)
2x+3 x>3

56. (Appendix A.6/1.1) For the figure shown, (a) use the
Pythagorean Theorem to find the length of the
missing side and (b) state the area of the triangular

side.

8cm




X3 Variation: The Toolbox Functions in Action

LEARNING

OBJECTIVES

In Section 2.6 you will see

how we cam:

[ A. Solve direct variations
O B. Solve inverse variations
O ¢. Solve Joint variations

2-73

EXAMPLE 1

Solution

A study of direct and inverse variation offers perhaps our clearest view of how math-
ematics is used to model real-world phenomena. While the basis of our study is
elementary, involving only the toolbox functions, the applications are at the same
time elegant, powerful, and far reaching. In addition, these applications unite some of
the most important ideas in algebra, including functions, transformations, rates of
change, and graphical analysis, to name a few.

A. Toolbox Functions and Direct Variation

If a car gets 24 miles per gallon (mpg) of gas, we could express the  Table 2.4

distance d it could travel as 4 = 24g. Table 2.4 verifies the distance 4
traveled by the car changes in direct or constant proportion (o the .

number of gallons used, and here we say, “distance traveled varies L R
directly with gallons used.” The equation d = 24dg is called a direct 2 B
variation, and the coefficient 24 is called the constant of variation. 3 72
Using the rate of change notation, s = Ei and we note 4 196

Agallons T Ag 1
this is actually a linear equation with slope m = 24. When working with variations,
the constant k is preferred over m, and in general we have the following:

Direct Variation
y varies directly with x, or y is directly proportional 1o x, if
there is a nonzero constant & such that
y = kx.
k is called the constant of variation

Wrlting a Variation Equation
Write the variation equation for these statements:
a. Wages carned varies directly with the number of hours worked.
b. The value of an office machine varies directly with time.
¢. The circumference of a circle varies directly with the length of the diameter.

a. Wages varies directly with hours worked: W = kh
b. The Value of an office machine varies directly with time: V = k¢
¢. The Circumference varies directly with the diameter: C = kd

Now try Exercises 7 through 10

Once we determine the relationship between two variables is a direct variation, we try
to find the value of k and develop an equation model that can more generally be
applied. Note that “varies directly” indicates that one value is a constant multiple of the
other. In Example 1, you may have realized that if any one relationship between the
variables is known, we can solve for & by substitution. For instance, if the circumfer-
ence of a circle is 314 c¢cm when the diameter is 100 c¢cm, C = kd becomes
314 = k(100) and division shows k& = 3.14 (our estimate for 7). The resuli is a for-
mula for the circumference of any circle. This suggests the following procedure:

177
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EXAMPLE 2

Solution

EXAMPLE 3

Solution

Solving Applications of Varlation

1. Translate the information given into an equation model, using k as the
constant of variation.

2. Substitute the first refationship (pair of values) given and solve for &
3. Substitute this value for k in the original model to obtain the variation equation.
4, Use the variation equation to complete the application,

Solving an Application of Direct Variation

The weight of an astronaut on the surface of another planet varies directly with |
their weight on Earth, An astronaut weighing 140 1b on Earth weighs only 53.2 Ib
on Mars. How much would a 170-Ib astronaut weigh on Mars?

1. M=IE “Mars weight varies directly with Earth weight"
2. 53.2 = k(140)  substilute 53.2 for Mand 140 for £
k=038 solve for k (constant of variation)

Substitute this value of £ in the original equation to obtain the variation equation,
then find the weight of a 170-1b astronaut that landed on Mars.

3. M =033k variation equation
4. = 0.38(170) substitute 170 for £
= 64.6 result
An astronaut weighing 170 1b on Earth weighs only 64,6 Ib on Mars.

Now try Exercises 11 through 14

The toolbox [unction from Example 2 was a line with alopci\ =0.38,0rk = Eas
a fraction in simplest form. As a rate of change, k = ﬁ“g = 12 and we see that for every
50 additional pounds on Earth, the weight of an astronaut would increase by only 19 Ib
on Mars,

Making Estimates from the Graph of a Variation

The scientists at NASA are planning to send additional probes to the red planet
(Mars), that will weigh from 250 to 450 tb. Graph the variation equation from
Example 2, then use the graph to estimate the corresponding range of weights on
Mars. Check your estimate using the variation equation.

After selectmg an appropnatc scale, begin at (0, 0) and count off the slope
= ﬁ = 50 This gives the points (50, 19), (100, 38), (200, 76), and so on.
From the graph (see dashed arrows), it

appears the weights corresponding to 250 tb 200 P
and 450 1b on Earth are near 95 b and b = e e R
170 1b on Mars. Using the equation gives . @00, 114y~ |
M =038E variation equation § W l- > A~ |
= 0.38(250) substitute 250 for £ o, B :
= 95 o~ | |
’ A5 06y | I
M = 038E variation equation 0 "—2';{]" : ?m =
= 0.38(450) Earth

= 171, very close to our estimate from the graph.

Now try Exercises 15 and 16
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EXAMPLE 4

Solution

EXAMPLE 5

Solution
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When toolbox functions are used to model variations, our knowledge of their graphs
and defining characteristics strengthens a contextual understanding of the application.
Consider Examples 4 and 5, where the squaring function is used.

Writing Variation Equations

Write the variation equation for these statements:

a. In free fall, the distance traveled by an object varies directly with the square of
the time.

b. The area of a circle varies directly with the square of its radius,

a. Distance varies directly with the square of the time: D = ke,
b, Area varies directly with the square of the radius: A = kr°.

Now try Exercises 17 through 20

Both variations in Example 4 use the squaring function, where & represents the amount
of stretch or compression applied, and whether the graph will open upward or down-
ward. However, regardless of the function used, the four-step solution process remains
the same.

Solving an Application of Direct Variation

The range of a projeciile varies directly with the square of its initial velocity. As
part of a circus act, Bailey the Human Bullet is shot out of a cannon with an initial
velocity of 80 feet per second (ft/sec), into a net 200 ft away.

a. Find the constant of variation and write the variation equation.

b. Graph the equation and use the graph to estimate how far away the net should
be placed if initial velocity is increased to 95 ft/sec.

¢. Determine the accuracy of the estimate from (b) using the variation equation.

al R=k’

2. 200 = k(80)°
k=

3 R= v

b. Since velocity and distance are positive,
we again use only QI The graph is a P
parabola that opens upward, with the 200 i (100, 313) 4
vertex at (0, 0). Selecting velocities L T
from 50 to 100 ft/sec, we have:

R = 0.03125/*
= 0.03125(50)° T8
= 78.125 o T m @ w0 % 0
Likewise substituting 100 for v gives Velocity
R = 312.5 ft. Scaling the axes and using

(0, 03, (50, 78), and (100, 313) produces the graph shown. At 95 fit/sec (dashed
lines), it appears the net should be placed about 280 ft away.

Distance

¢, Using the variation equation gives:
4. R = 0.03125
= 0.03125(95)°
R = 282.03125

Our estimate was off by about 2 ft. The net should be placed about 282 ft away.

Now try Exercises 21 through 26
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@ A. You've just seen how
we can solve direct variations

CHAPTER 2 More on Functions 2-76

Table 2.5

Price Demand
(dollars) (1000s)

8 288

9 144

10 96

I 72

12 57.6

We now have a complete picture of this relationship, in which the required infor-
mation can be presented graphically (Figure 2.93), numerically (Figure 2.94), verbally,
and in equation form. This enables the people requiring the information, i.e., Bailey
himself (for obvious reasons) and the Circus Master who is responsible, to make more
informed (and safe) decisions.

Figure 2,
SU:OO % Figure 2,94
=03 1ZERE ; ¥
Yo g0
ED 78128
B0 112.5
of 120 70 1€2.42
[ e o Se143
[ o™ ?ﬁ'ﬁ-zizis
H=9E Y=zBE.031Z8 =108
—50
R =0.031252

Range R varies as the
square of the velocity

Note: For Examples 7 and 8, the four steps of the solution process were used in
sequence, but not numbered.

B. Inverse Variation

Numerous studies have been done that relaie the price of a commedity to the
demand—the willingness of a consumer to pay that price. For instance, if there is a
sudden increase in the price of a popular tool, hardware stores know there will be a
corresponding decrease in the demand for that tool. The question remains, “What is
this rate of decrease?” Can it be modeled by a linear function with a negative slope?
A parabola that opens downward? Some other function? Table 2.5 shows some
(simulated) data regarding price versus demand. It appears that a linear function is
nol appropriate because the rate of change in the number of tools sold is not
constant. Likewise a quadratic model seems inappropriate, since we don’t expect
demand to suddenly start rising again as the price continues to increase. This
phenomencn is actually an example of inverse variation, modeled by a transforma-
tion of the reciprocal function y = £ We will often rewrite the equation as y = kg%)
Lo clearly see the inverse relationship. In the case at hand, we might write D = k(5),
where £ is the constant of variation, D represents the demand for the product, and P
the price of the product. In words, we say that “demand varies inversely as the
price.” In other applications of inverse variation, one quantity may vary inversely as
the square of another [Example 6(b)], and in general we have

Inverse Varlation

¥ varies inversely with x, or y is inversely proportional to x, if
there is a nonzero constant & such that

- ()

k is called the constant of variation
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EXAMPLE 6 Writing Inverse Varlation Equations
Write the variation equation for these statements:
a. In a closed container, pressure varies inversely with the volume of gas.
b, The intensity of light varies inversely with the square of the distance from the
source,

Solution a. Pressure varies inversely with the Volume of gas: P = k().

1
b. Intensity of light varies inversely with the square of the distance: / = A(T)
4

Now_ iry Exercises 27 through 30

EXAMPLE 7 Solving an Application of Inverse Varlation

Boyle’s law tells us that in a closed container with constant temperature, the
votlume of a gas varies inversely with the pressure applied (see illustration). ‘
Suppose the air pressure in a closed cylinder is 50 pounds per square inch (psi) |
when the volume of the cylinder is 60 in”,
a. Find the constant of variation and write the variation equation,
|

b. Use the equation to find the volume, if the pressure is increased to 150 psi.

Solutlon a V= k(%)

flustration of Boyle's Law 1 '
—— —_— |
low polume 60 k( 50) II
essire — 70 k= 3000 :

© © o0ls '
° 090 s v=unfz) |
©0o. 0 O . - . '
o @ 0.0 © |-30 b. Using the variation equation we have: |

o O |-20
@) o OOO © :{I)O V= 3000(%) variation equation |
|
1 _

P — = 3000(—{5—0-) substitute 150 for P |

((D— —( 2) =20 result |
150°

50pst When the pressure is increased to 150 psi, the volume decreases to 20 in”. ]
I -
s ::“’ Now try Exercises 31 through 34
— 60
high : ig As an application of the reciprocal function, Flgure 2.85
pressure L 39 the relationship in Example 7 is easily graphed 250
O o) 20 ¢ on of 1 Usi . ?1;3000(133)
ONCO as a transformation ot y = —. Using anh appropri- [
o 8 O(% S [ X

200

0 ate scale and values in QI, only a vertical stretch
of 3000 is required and the result is shown in Fig- 0}

pressury emp

7 ure 2.95. As noted, when the pressure increases m____\___\_ﬁ_‘_
@— —C) the volume decreases, or in notation: as P — co, P o e

150 psi (50" V — 0. Applications of this sort can be as sophis- #1580 Y=20

ticated as the manufacturing of industrial pumps -2
& B. You've just seen how and synthetic materials, or as simple as cooking a homemade dinner. Simply based on

we can solve inverse variations  the equation, how much pressure is required to reduce the volume of gas to 1 in*?
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EXAMPLE 8

Solution

& ©. You've just seen how
we can solve joint variations

C. Joint or Combined Variations

Just as some decisions might be based Figure 2.96
on many considerations, often the rela-
tionship between two variables depends
on a combination of factors, Imagine a
wooden plank laid across the banks of a
stream for hikers to cross the streambed
(see Figure 2.96). The amount of
weight the plank will support depends
on the type of wood, the width and height of the plank’s cross section, and the dis-
tance between the supported ends (see Exercises 59 and 60). This is an example of a
joint variation, which can combine any number of variables in different ways. Two
general possibilities are: (1) y varies jointly with the product of x and p: y = kxp; and
(2) y varies jointly with the product of x and p, and inversely with the square of g:
y= kxp(#). For practice writing joint variations as an equation model, see Exercises
35 through 40.

Solving an Application of Joint Variation

The amount of fuel used by a certain ship
traveling at a uniform speed varies jointly with
the distance it travels and the square of the
velocity. If 200 barrels of fuel are used to travel
10 mi at 20 nautical miles per hour, how far
does the ship travel on 500 barrels of fuel at

30 nautical miles per hour?

F= kdv2 "Fuel use varies jointly wilh distance and velacity squared”
200 = K(10)(20)*  substitute 200 for , 10 for ¢, and 20 for ¥
200 = 4000k simplify and solve for k |
005 =k constant of variation

F = 0.058v* equation of variation

To find the distance traveled at 30 nautical miles per hour using 500 barrels of fuel,
substitute 500 for F and 30 for v:

F = 0.05dv* equation of variation |
500 = 0.05d(30)*  substitute 500 for Fand 30 for v
500 = 45d simplify
111 =d result

If 500 barrels of fuel are consumed while traveling 30 nautical miles per hour, the
ship covers a distance of just over 11 mi.

7

Now try Exerclses 41_thr_ough_4_4 -

It’s interesting to note that the ship covers just over one additional mile, but
consumes 2.5 times the amount of fuel. The additional speed requires a great deal
more fuel,

There is a variety of additional applications in the Exercise Set. See Exercises 47
through 38,
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» CONCEPTS AND VOCABULARY

Sectlon 2.6 Variation: The Toolbox Functions in Actlon 183

Fill in each blank with the appropriate word or phrase, Carefully reread the section if needed.

1. The phrase “y varies directly with x” is written
y = kx, where kiscalledthe __ of
variation,

3. For aright circular cylinder, V = 7+%h and we say,
the volume varies with the
and the of the radius.

5. Discuss/Explain the general procedure for solving
applications of variation. Include references to
keywords, and illustrate using an example.

> DEVELOPING YOUR SKILLS

Write the variation equation for each statement,
7. distance traveled varies directly with rate of speed
8. cost varies directly with the quantity purchased
9. force varies directly with acceleration
10. tength of a spring varies directly with attached
weight

For Exercises 11 and 12, find the constant of variation
and write the variation equation. Then use the equation
to complete the table,

11. y varies directly with x; y = 0.6 when x = 24.

x ¥
500
16.25
750

12, w varies directly with v; w = } when v = 5.

291
21.8

339

2. If more than two quantities are related in a
variation equation, the result is called a
variation.

=

The statement “y varies inversely with the square
of x” is written

6. The basic percent formula is amount equals
percent times base, or A = PB. In words, write this
out as a direct variation with B as the constant of
variation, then as an inverse variation with the

amount A as the constant of variation.

13

Wages and hours worked: Wages earned varies
directly with the number of hours worked. Last
week I worked 37.5 hr and my gross pay was
$344.25. Write the variation equation and
determine how much I will gross this week if I
work 35 hr. What does the value of & represent in
this case?

Pagecount and thickness of books: The thickness
of a paperback book varies directly as the number of
pages. A book 3,2 cm thick has 750 pages. Write the
varjation equation and approximate the thickness of
Roget’s 21st Century Thesaurus (paperback—2nd
edition), which has 957 pages.

14

15. Building height and number of stairs: The
number of stairs in the stairwells of tall buildings
and other structures varies directly as the height of
the structure. The base and pedestal for the Statve
of Liberty are 47 m tall, with 192 stairs from
ground level to the observation deck at the top of
the pedestal (at the statue's feet). (a) Find the
constant of variation and write the variation
equation, (b) graph the variation equation, (c) use
the graph to estimate the number of stairs from
ground level to the observation deck in the statue’s
crown 81 m above ground level, and (d) use the
equation to check this estimate. Was it close?
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16. Projected images: The height of a projected image

varies directly as the distance of the projector from
the screen. At a distance of 48 in., the image on the
screen is 16 in, high. (a) Find the constant of
variation and write the variation equation,
(b) graph the variation equation, (c) use the graph
to estimate the height of the image if the projector
is placed at a distance of 5 ft 3 in., and (d) use the
equation to check this estimate. Was it close?

Write the variation equation for each statement.

17. Surface area of a cube varies directly with the
square of a side.

18. Potential energy in a spring varies directly with the
square of the distance the spring is compressed.

19. Electric power varies directly with the square of
the current (amperes).

20. Manufacturing cost varies directly as the square of
the number of items made.

For Exercises 21 and 22, find the constant of variation
and write the variation equation. Then use the equation
to complete the table,

21. p varies directly with the square of g; p = 280

when ¢ = 50
q P
45
3388
T0
22. n varies directly with m squared; n = 24.75 when
m =30
m n
40
99
88

For Exercises 23 to 26, supply the relationship indicated
(a) in words, (b) in equation form, (c) graphically, and
(d) in table form, then (e) solve the application.

23. The Borg Collective: The surface area of a cube
varies directly as the square of one side. A cube
with sides of 14V/3 ¢cm has a surface area of
3528 cm”. Find the surface area in square meters of
the spaceships used by the Borg Collective in Star
Trek—The Next Generation, cubical spacecraft
with sides of 3036 m.

24.

25,

26.

27,

28.

29,

30.

31.
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Geometry and geography: The area of an
equilateral triangle varies directly as the square of
one side. A triangle with sides of 50 yd has an area
of 1082.5 yd?. Find the area in mi2 of the region
bounded by straight lines connecting the cities of
Cincinnati, Ohio, Washington, D.C., and
Columbia, South Carolina, which are each
approximately 400 mi apart.

Galileo and gravity: The distance an object falls
varies directly as the square of the time it has been
falling. The cannonballs dropped by Galileo from
the Leaning Tower of Pisa fell about 169 ft in

3.25 sec. How long would it take a hammer,
accidentaily dropped from a height of 196 ft by a
bridge repair crew, to splash into the water below?
According to the equation, if a camera accidentally
fell out of the News 4 Eye-in-the-Sky helicopter and
hit the ground in 2.75 sec, how high was the
helicopter?

Soap bubble surface area: When a child blows
small soap bubbles, they come out in the form of a
sphere because the surface tension in the soap
seeks to minimize the surface area. The surface
area of any sphere varies directly with the square
of its radius. A soap bubble with a § in. radius has a
surface area of approximately 7.07 in®. What is the
radius of a seventeenth-century cannonball that has
a surface area of 113.1 in*? What is the surface
area of an orange with a radius of 1} in.?

Write the variation equation for each statement.

The force of gravity varies inversely as the square
of the distance between objects.

Pressure varies inversely as the area over which it
is applied.

The safe load of a beam supported at both ends
varies inversely as its length.

The intensity of sound varies inversely as the
square of its distance from the source.

For Exercises 31 through 34, find the constant of
variation and write the variation equation. Then use the
equation to complete the table or solve the application.

Y varies inversely as the square of Z; ¥ = 1369
whenZ = 3

37
2.25
111
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32. A varies inversely with B; A = 2450 when B = 0.8

B A
140
6.125
560

33. Gravitational force: The effect of Earth’s gravity on

an object (its weight) varies inversely as the square of

its distance from the center of the planet (assume the
Earth’s radius is 6400 km). If the weight of an
astronaut is 75 kg on Earth (when r = 6400), what
would this weight be at an altitude of 1600 km above
the surface of the Earth?

34. Popular running shoes: The demand for a popular
new running shoe varies inversely with the price of
the shoes. When the wholesale price is set at $45,
the manufacturer ships 5500 orders per week to
retail outlets. Based on this information, how many
orders would be shipped per week if the wholesale
price rose to $55?

Write the variation equation for each statement.

35, Interest camed varies jointly with the rate of
interest and the length of time on deposit.

36. Horsepower varies jointly as the number of
cylinders in the engine and the square of the
cylinder’s diameter.

37. The area of a trapezoid varies jointly with its
height and the sum of the bases.

38. The area of a triangle varies jointly with its base
and its height.

39. The volume of metal in a circular coin varies
directly with the thickness of the coin and the
square of its radius,

> WORKING WITH FORMULAS

45. Required interest rate: R(4) = VA — 1
To determine the simple interest rate R that would be
required for each dollar ($1) left on deposit for 3 yr to
grow to an amount 4, the formula R(A) = VA — 1
can be applied. (a) To what function family does this
formula belong? (b) Complete the table using a
calculator, then use the table to estimate the interest
rate required for each $1 to grow to $1.17.
(c) Compare your estimate to the value you get by
evaluating R(1.17). (d) ForR = VA — 1, solve
for A in terms of R.
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40. The electrical resistance in a wire varies directly
with its length and inversely as the cross-sectional
area of the wire,

For Exercises 41—44, find the constant of variation and
write the related variation equation, Then use the
equation to complete the table or solve the application.

41. C varies jointly with R and inversely with §
squared, and C = 21 when R = 7and § = 1.5.

R h C
120 225
200 12,5

15 10.5

42. J varies jointly with P and inversely with the square
rootof &, andJ = 19when P = 4 and @ = 25,

P Q J
47.5 118.75
112 31.36
44.89 66.5

43. Kinetic energy: Kinetic energy (energy attributed
to motion) varies jointly with the mass of the
object and the square of its velocity. Assuming a
unit mass of m = 1, an object with a velocity of
20 m per sec (m/s) has kinetic energy of 200 J.
How much energy is produced if the velocity is
increased to 35 m/s?

44, Safe load: The load that a horizontal beam can
support varies jointly as the width of the beam, the
square of its height, and inversely as the length of
the beam. A beam 4 in. wide and 8 in. tall can
safely support a load of 1 ton when the beam has a
length of 12 ft. How much could a similar beam
10 in, tall safely support?

Amount A Rate R

1.0

[.05
1.10
.13
1.20
1.25
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46.
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10,

Force between charged particles: F = kT

2-82

The force between two charged particles is given by the formula shown, where F is the force (in joules—1J), 0,
and Q, represent the electrical charge on each particle (in coulombs—C), and d is the distance between them (in
meters). If the particles have a like charge, the force is repulsive; if the charges are unlike, the force is attractive.
(a) Write the variation equation in words. (b) Solve for & and use the formula to find the electrical constant £,
given F = 0.36), 0, =2 X 107%C, ¢, = 4 X 107°C, and ¢ = 0.2 m, Express the result in scientific notation,

> APPLICATIONS

Find the constant of variation “%k> and write the
variation equation, then use the equation to solve.

47,

48.

49.

50,

51.

52.

53.

Cleanup time: The time required to pick up the
trash along a stretch of highway varies inversely

as the number of volunteers who are working. If

12 volunteers can do the cleanup in 4 hr, how many
volunteers are needed to complete the cleanup in
just 1.5 hr?

Wind poewer: The wind farms in southern
California contain wind generators whose power
production varies directly with the cube of the
wind’s speed. If one such generator produces 1000 W
of power in a 25 mph wind, find the power it
generates in a 35 mph wind.

Pull of gravity: The weight of an object on the
moon varies directly with the weight of the object
on Earth. A 96-kg object on Earth would weigh only
16 kg on the moon. How much would a fully suited
250-kg astronaut weigh on the moon?

Period of a pendulum: The time that it takes for a
simple pendulum to complete one period (swing
over and back) varies directly as the square root of
its length. If a pendulum 20 ft long has a period of
5 sec, find the period of a pendulum 30 ft long.

Stopping distance: The stopping distance of an
automobile varies directly as the square root of its
speed when the brakes are applied. If a car requires
108 ft to stop from a speed of 25 mph, estimate the
stopping distance if the brakes were applied when
the car was traveling 45 mph.

Supply and demand: A chain of hardware stores
finds that the demand for a special power tool
varies inversely with the advertised price of the
tool. If the price is advertised at $835, there is a
monthly demand for 10,000 units at all
participating stores. Find the projected demand if
the price were lowered to $70.83.

Cost of copper tubing: The cost of copper tubing
varies jointly with the length and the diameter of
the tube. If a 36-ft spool of §-in.-diameter tubing

54,

55

56.

57.

costs $76.50, how much does a 24-ft spool of 3-in.-
diameter tubing cost?

Eleetrical resistance: The electrical resistance of
a copper wire varies directly with its length and
inversely with the square of the diameter of the
wire. If a wire 30 m long with a diameter of 3 mm
has a resistance of 25 {}, find the resistance of a
wire 40 m long with a diameter of 3.5 mm.

Volume of phone calls: The number of phone calls
per day between two cities varies directly as the
product of their populations and inversely as the
square of the distance between them. The city of
Tampa, Florida (pop. 300,000), is 430 mi from the
city of Atlanta, Georgia (pop. 420,000).
Telecommunications experts estimate there are
about 300 calls per day between the two cities. Use
this information to estimate the number of daily
phone calls between Amarillo, Texas (pop.
170,000), and Denver, Colorado {(pop. 550,000),
which are also separated by a distance of about
430 mi. Note: Population figures are for the year
2000 and rounded to the nearest ten-thousand.
Source: 2005 World Amanac, p. 626.

Internet commerce: The likelihood of an eBay®
item being sold for its “Buy it Now®™” price P, varies
directly with the feedback rating of the seller, and
inversely with the cube of g7&zp, where MSRP
represents the manufacturer’s suggested retail price.
A power eBay® seller with a feedback rating of
99.6%, knows she has a 60% likelihood of selling an
item at 90% of the MSRP. What is the likelihood a
seller with a 95.3% feedback rating can sell the
same ttem at 95% of the MSRP?

Volume of an egg: The volume of an egg laid by an
average chicken varies jointly with its length and the
square of its width. An egg measuring 2.50 cm wide
and 3.75 cm long has a volume of 12.27 cm®. A
Barret’s Blue Ribbon hen can lay an egg measuring
3.10 cm wide and 4.65 cm long. (a) What is the
volume of this egg? (b) As a percentage, how much
greater is this volume than that of an average
chicken’s egg?
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58. Athletic performance: Researchers have estimated
that a sprinter’s time in the 100-m dash varies
directly as the square root of her age and inversely
as the number of hours spent training each week. At
20 yr old, Gail trains 10 hr per week (hr/wk) and has
an average time of 11 sec. Assuming she continues
to train 10 hr/wk, (a) what will her average time be
at 30 yr old? (b) If she wants to keep her average
titne at 11 sec, how many hours per week should she
train?

59. Maximum safe load: The maximum safe load M
that can be placed on a uniform horizontal beam
supported at both ends varies directly as the
width w and the square of the height £ of the

beam’s cross section, and inversely as its length L

» EXTENDING THE CONCEPT

61. The gravitational force F between two celestial
bodies varies jointly as the product of their masses
and inversely as the square of the distance d
between them. The relationship is modeled by
Newton’s law of universal gravitation: F = kiﬂjg".
Given that &£ = 6.67 X 10~ !, what is the
gravitational force exerted by a 1000-kg sphere on
another identical sphere that is 10 m away?

» MAINTAINING YOUR SKILLS

244\ "2
63. (Appendix A.2) Evaluate: (—3)
I’y

65. (2.4) State the domains of f and g given here:
x—3
a. x =
) 2 -16
x—3
Vi - 16

b. g(x) =
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(width and height are assumed to be in inches,
and length in feet). (a) Write the variation
equation. (b) If a beam 18 in. wide, 2 in. high,
and 8 ft long can safely support 270 lb, what is
the safe load for a beam of like dimensions with
a length of 12 ft?

60. Maximum safe load: Suppose a 10-ft wooden
beam with dimensions 4 in. by 6 in, is made from
the same material as the beam in Exercise 59 (the
same % value can be used). (a) What is the maximum
safe load if the beam is placed so that width is 6 in.
and height is 4 in.? (b} What is the maximum safe
load if the beam is placed so that width is 4 in. and
height is 6 in.?

62, The intensity of light and sound both vary inversely

as the square of their distance from the source.

a. Suppose you're relaxing one evening with a
copy of Twelfth Night (Shakespeare), and the
reading light is placed 5 ft from the surface of
the book. At what distance would the intensity
of the light be twice as great?

b. Tamino’s Aria (The Magic Flute—Mozart) is
playing in the background, with the speakers
12 ft away. At what distance from the speakers
would the intensity of sound be three times as
great?

64. (Appendlx A.4) Solve: x* + 6x%2 + 8x = 0.

66. (2.3) Graph by using transformations of the parent
function and plotting a minimum number of points:
flxy = =2 — 3] + 5.
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WY MAKING CONNECTIONS

Making Connections: Graphically, Symbolically, Numerically, and Verbaily
Eight graphs (a) through (h) are given, Match the characteristics shown in 1 through 16 to one of the eight graphs.

{a)

(e)

&

(b) %

=5

{g}

1. domain: x € (—oo, 1) U (1, o0)
2, y=Vx+4-2
Fx)1 forx € (1, 00)
4. horizontal asymptote at y = —1
= +
5 — x+1 !
6. domain; x € [— 4 2]
T y=k-1-
8. fx)=0forx €1, o0)

5

r (d) 4

4 ) 1

/f‘

=5
g e ]
]

—
— |

¥

L x =3

—

-

9-___

domain: x € [—4, c0)

— =3 =-Lf5)=1

11,

12,

basic function is shifted 3 units left,
reflected across x-axis, then shifted

up 2 units

basic function is shifted 1 unit left,

2 units up

13 f(-3)=—4,£(2) =0

14. asx —o00,y—1
15, ___ f(x) > Oforx € (—o0, 00)
(x+2°-5 x<0
16. =41
Y -2-x—1. x=0
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ML¥ SUMMARY AND CONCEPT REVIEW

SECTION 2.1 Analyzing the Graph of a Function

KEY CONCEPTS
+ A function f is even (symmetric to the y-axis), if and only if when a point (x, y) is on the graph, then (—x, y) is also
on the graph. In function notation: f{—x} = f(x).
» A function fis odd (symmetric to the origin), if and only if when a point (x, ¥) is on the graph, then (—x, —¥} is
also on the graph. In function notation: f(—x) = —f{(x).

Intuitive descriptions of the characteristics of a graph are given here, The formal definitions can be found within
Section 2.1.

« A function is increasing in an interval if the graph rises from left to right (larger inputs produce larger outputs).

« A function is decreasing in an interval if the graph falls from left to right (larger inputs produce smaller outputs).
» A function is positive in an interval if the graph is above the x-axis in thai interval.

» A function is negative in an interval if the graph is below the x-axis in that interval.

« A function is constant in an interval if the graph is parallel to the x-axis in that interval.

¢ A maximum value can be a local maximum, or global maximum, An endpoint maximum can occur at the
endpoints of the domain. Similar statements can be made for minimum values.

EXERCISES

State the domain and range for each function f(x) given. Then state the intervals where fis increasing or decreasing
and intervals where fis positive or negative. Assume all endpoints have integer values.

1. 2 4y 3. ¥
/

- "
\|
\\ / AR /
i \ / 0w Wil 5 = A Y e

. 17,

LII” I ’

4. Determine whether the following are even [f(—k) = f(k)], odd [f(—4) = —f(k)], or neither.

3
a, fx) = 2«° — Vx b, g(x) = x* —%
2~

¢ plx) = 3a — x° d. glx) = P

5. Draw the function fthat has all of the following characteristics, then name the zeroes of the function and the

location of all local maximum and minimum values, [Hint; Write them in the form (¢, f(c)).]
a. Domain: x € [—6, 10) b. Range: y € [-8§, 6)

¢ f0)=0 d. f(x) forx € (-6, -3)U (3,7.5)

e. f(x)T forx €(-3,3)U(7.5,10) f. f(x) < Oforx&€(-6,0)U(6,9)

g fix) > 0forx € (0,6)U (9, 10)

Q 6. Use a graphing calculator to find the maximum and minimum values of f(x) = 2x° — V. Round to the nearest
& hundredth.
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SECTION 2.2 The Toolbox Functions and Transformations

KEY CONCEPTS
* The toolbox functions and graphs commonly used in mathematics are

* the identity function f(x) = x + squaring function: f{x) = ¥
+ square root function: f(x) = Vx + absolute value function: f(x) = |x|
* cubing function: f(x) = x° « cube root function: f(x) = Vx

« For a basic or parent function y = f(x), the general equation of the transformed function is y = af(x = A} * k.
For any function y = f(x) and &, k > 0,

o the graph of y = f(x) + k is the graph o the graph of y = f(x) — & is the graph
of ¥ = f(x) shifted upward k units of y = f{x) shifted downward & units

e the graph of y = f(x + k) is the graph of « the graph of y = f(x — h) is the graph of
¥ = f(x) shifted left A units y = f(x} shifted right / units

¢ the graph of y = —f(x) is the graph of » the graph of y = f{—x) is the graph of
y = f(x) reflected across the x-axis y = f{x) refiected across the y-axis

* y = af(x) results in a vertical stretch » y = gf{x) results in a vertical compression
whena > 1 when0 << a <1

* Transformations are applied in the following order: (1) horizontal shifts, (2) reflections, (3) stretches or
compressions, and (4) vertical shifis.

EXERCISES
Identify the function family for each graph given, then (a) describe the end-behavior; (b} name the x- and y-intercepts;
(c) identify the vertex, initial point, or point of inflection (as applicable); and (d) state the domain and range.

7 ; 8. e 9, Y.

b

10« 3 ¥ 11, 5 ¥

Identify each function as belonging to the linear, quadratic, square root, cubic, cube root, or absolute value family.
Then sketch the graph using shifts of a parent function and a few characteristic points,

12, f(x) = —(x + 2> ~ 5 13, f(x) = 2Jx + 3| 4. fx) =+~ 1
15. f(x) = Vx — 5 + 2 16. f(x) = Vx + 2
17. Apply the iransformations indicated for the graph of f{x) given.

a flx - 2) st

b. —f(x) + 4 G S
e 3./(x)

8 Nyt 5x
&=
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SECTION 2.3 Absolute Value Functions, Equations, and Inequalities

KEY CONCEPTS

¢ To solve absolute value equations and inequalities, begin by writing the equation in simplified form, with the
absolute value isolated on one side.
If X and ¥ represent algebraic expressions and & is a nonnegative constant:

+ Absolute value equations:  |X| = kisequivalentto X = —korX =k
|X] = |Y| isequivalentto X = YorX = =Y
o “Less than” inequalities: |X| < kis equivalentto —&k < X < k

o “Greater than” inequalities: |X| > kisequivalentto X < —korX > %
¢ These properties also apply when the symbols “=" or “="are used.

« If the absolute value quantity has been isolated on the left, the solution to a less-than inequality will be a single
interval, while the solution to a greater-than inequality will consist of two disjoint intervals.

* The multiplicative property states that for algebraic expressions A and B, |AB| = |A||B!,
» Absolute value equations and inequalities can be solved graphically using the intersect method or the
zeroes/x-intercept method.

EXERCISES

Solve each equation or inequality. Write solutions to inequalities in interval notation.

18. 7 = |x — 3| 19, —2|x+2| =—10 20. |-+ 3| =13
21.|2x—:5|+8=9 22, 3 +2-2<-14 23. %—9|57
24. 3x + 5| = —4 25 3x+ 1| < -9 26. 2x + 1| > —4
27.5m -2 -12=8 zs.'h’—;zuer_:m

29, Monthly rainfall received in Omaha, Nebraska, rarely varies by more than 1.7 in, from an average of 2.5 in. per
month. (a) Use this information to write an absolute value inequality model, then (b} solve the inequality to find
the highest and lowest amounts of menthly rainfall for this city.

SECTION 2.4 Basic Rational Functions and Power Functions; More on the Domain

KEY CONCEPTS

X
o A rational function is one of the form ¥(x) = EQ, where p and d are polynomials and d(x) # 0,

d(x)
1 1
» The most basic rational functions are the reciprocal function f(x) = < and the reciprocal square function g(x) = —.
X

« The line y = £ is a horizontal asymptote of V if as |x| increases without bound, V(x) approaches &: as x| — o0,
V(x)—&.

* The line x = A is a vertical asymptote of V if as x approaches %, V(x) increases/decreases without bound: as x — A,

[V(x)| — o0.

The reciprocal and reciprocal square functions can be transformed vsing the same shifts, stretches, and reflections

as applied to other basic functions, with the asymptotes also shifted.

» A power function can be written in the form f(x} = x” where p is a constant real number and x is a variable,

1 " Lo
Ifp = ~ where # is a natural number, f(x) = x = Vx is called a root function in x,

Given the rational exponent 2 is in simplest form, the domain of f(x) = x” is (— oo, co) if n is odd, and [0, co) if n
is even.
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EXERCISES

Sketch the graph of each function using shifts of the parent function (not by using a table of values). Find and label the
x- and y-intercepts (if they exist) and redraw the asymptotes.

1 -1
30. = —1 1. =— -
fx) 2 31, Ax) G- 2f 3
; . . L —7500
32. In a certain county, the cost to keep public roads free of trash is given by C(p) = m — 75, where C(p)

represents the cost (thousands of dollars) to keep p percent of the trash picked up. () Find the cost to pick up
30%, 50%, 70%, and 90% of the trash, and comment on the results. (b) Sketch the graph using the transformation
of a toolbox function. (¢) Use mathematical notation to describe what happens if the county tries to keep 100% of
the trash picked up.

33. Use a graphing calculator to graph the functions f(x) = x!, g(x) = 2, and h(x) = x7 in the same viewing window.
What is the domain of each function?

r? models the time T (in hr) it takes for a satellite to complete one revolution around

34. Th ion T =
e expression 37.840

the Earth, where r represents the radius (in km) of the orbit measured from the center of the Earth. If the Barth
has a radius of 6370 km, (a) how long does it takes for a satellite at a height of 200 km to complete one orbit?
(b) What is the orbital height of a satellite that completes one revolution in 4 days (96 hr)?

SECTION 2.5 Piecewise-Defined Functions

KEY CONCEPTS
» Each piece of a piecewise-defined function has a domain over which that piece is defined.

To evaluate a piecewise-defined function, identify the domain interval containing the input value, then use the
piece of the function corresponding to this interval.

To graph a piecewise-defined function you can plot points, or graph each piece in its entirety, then erase portions
of the graph outside the domain indicated for each piece,

If the graph of a function can be drawn without lifting your pencil from the paper, the function is continuous.
A discontinuity is said to be removable if we can redefine the function to “fill the hole.”

Step functions are discontinuous and formed by a series of horizontal steps.

The floor function x| gives the largest integer less than or equal to x.

+ The ceiling function [x] is the smallest integer greater than or equal to x.

*

>

L]

*

EXERCISES

35. For the graph and functions given, (a) use the correct notation to write the relation as a it
single piecewise-defined function, stating the effective domain for each piece by inspecting S
the graph; and (b) state the range of the function: Y, =5, Y, = -X + 1, N
Y;=3VX -3- 1. 1T e

36. Use a table of values as needed to graph A(x), theo state its domain and range. If the
function has a pointwise (removable) discontinuity, state how the second piece could be
redefined so that a continuous function results.

A

X215 L g
h(x) = x+3 7
-6, x=-3
37, Evaluate the piecewise-defined function p(x): p{—4), p(—2), p(2.5). p(2.99), p(3), and p(3.5)
-4, x < -2
p) = —d-2 -2=x<3

3IVx—9, x=3
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38. Sketch the graph of the function and state its domain and range. Use transformations of the toclbox functions
where possible,

2V=x—-3-4, x=-3
q(x) = § —2Kl + 2, —3<x<3
2Vx — 3 — 4, x=3

39. Many home improvement outlets now rent flatbed trucks in support of customers that purchase large items. The
cost is $20 per hour for the first 2 hr, $30 for the next 2 hr, then $40 for each hour afterward. Write this information
as a piecewise-defined function, then sketch its graph. What is the total cost to rent this truck for 5 hr?

SECTION 2.6 Variation: The Toolbox Functions in Action

KEY CONCEPTS
o Direct variation: If there is a nonzero constant & such that y = kx, we say, “y varies directly with x” or “y is
directly proportional to x™ (k is called the constant of variation).

. 1 . . .
« Inverse variation: If there is a nonzero constant & such that y = k(—) we say, “y varies inversely with x” or y is
inversely proportional to x. *

« In some cases, direct and inverse variations work simultaneously to form a joint variation.
» The process for solving variation applications can be found on page 173.

EXERCISES
Find the constant of variation and write the equation model, then use this model to complete the table.
40, y varies directly as the cube root of x; 41. z varies directly as v and inversely as the
y = 52.5 whenx = 27, square of w; z = 1.62 when w = 8 and
v = 144
x ¥
216 v w z
12.25 196 7
729 1.25  17.856
24 | 48

42. Given ¢ varies jointly with & and v, and inversely as w, if t = 30 when u# = 2, v = 3, and w = 5, find ¢ when
w=_8v=12andw=15.

43, The time that it takes for a simple pendulum to complete one period (swing over and back) is directly proportional
to the square root of its length, If a pendulum 16 fi long has a period of 3 sec, find the time it takes for a 36-ft
pendulum to complete one period.

Y PRACTICE TEST

1. Determine the foltowing from the graph shown. y
a. the domain and range
b. estimate the value of f{—1) .
¢. interval(s) where f(x) is negative or positive e R
d. interval(s) where f(x) is increasing, decreasing, or constant.
e. an equation for f(x) T4

— e ki
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For the function A(x) whose partial graph is given. @ 12, After the engine is cut at ¢ = 0, a boat coasts for a
2. Complete the graph if 4 is known to be even, while before stopping. The distance D it travels over
240 I

(t+2)

1 the boat comes to a complete stop after traveling 59 ft,

1 use a graphing calculator to determine the time

required to stop. Round your answer to the nearest

= = tenth.

3. Complete the graph if 4 is known to be odd. t sec can be modeled by D(r) = 60 —

i 13. Find the domains of the following functions.
y a f(x) = 2006 b g(x) = —4.224}
¢ h(r) = 4.5

4. Use a graphing calculator to find the maximum and

minimum values of f{x) = |¥* + 4x — 11| - 7. 14. Identify the vertical and horizontal asymptotes of
Round answers to nearest hundredth when necessary. glx) = 3
5. Each function graphed here is from a toolbox (x +2)
Eunctﬁon famfly. For each graph, (a) identify the Using time-laps.:: pl'lot.ography, o -
unction family, (b) state the domain and range, the spread of a liquid is (sec) (mm)
(c) identify x- and y-intercepts, (d) discuss the end- tracked in one-fifth of a
behavior, and (¢) solve the inequalities f(x) > 0 and second intervals, as a small 0.2 0.39
flx) < 0. amount of liquid is dropped on 04 2f
|8 4 I 4 a piece of fabric. A power 0.6 3.90
: f.* function provides a reasonable 0.8 10.60
M model for the first second. | 21.50
e . Z Use a graphing calculator to
i & : K (a) graph a scatterplot of the data and (b) find an
/! equation model using a power regression (round to
5 i two decimal places). Use the equation to estimate
(c) the size of the stain after 0.5 sec and (d) how
(L LS . long it will take the stain to reach a size of 15 mm,
| | 16. The following function has two removable
A 5N \ Il discontinuities. Find the values of 4 and b so that a
3 7 Y = .!‘“‘ continuous function results,
' " / e N T
/ \ \ x |_1" 4.1. 4. 9 =19
5 " P olz) = X —p—2
a, x= =l
Sketch each graph using a transformation. b, x=12
6. fx)=1x~-2[+3 17. The annual output of a wind turbine varies jointly
7. 8(0) = —(x +3)> -2 with the square of the blade diameter and the cube of
the average wind speed. If a 10-ft-diameter turbine
Solve each inequality. Write the solutions in interval in 12 mph average winds produces 2300 KWH/year,
notation. how much will a 6 ft-diameter turbine produce in
2 15 mph average winds? Round to the nearest
8. §|3x -1 >14 9. 5-2k+2|=1 KWH/year.
@ 10. Use a graphing calculator to solve the equation. ) 4 x< 2
3 3 18. Givenio(x) = {2x, —2=x=2
1.?|x—0.75|+3=3—~5—x—-zl X, x>2
) a. Find A(—3), h(—2), and h(Z)
11, Sketch the graph of f(x) = Pt Find and label the b. Sketch the graph of &, Label important points.

x- and y-intercepts, if they exist, along with all
asymptotes.
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19. By observing a significantly smaller object orbiting a

large celestial body, astronomers can easily determine
the mass of the larger. Appealing to Kepletr’s third law
of planetary motion, we know the mass of the large
body varies directly with the cube of the mean
distance to the smaller and inversely with the square

Calculator Exploration and Discovery 195

20. The maximum load that can be supported by a

rectangular beam varies jointly with its width and
its height squared and inversely with its length. If a
beam 10 ft long, 3 in. wide, and 4 in. high can
support 624 1b, how many pounds could a 12-ft-long
beam with the same dimensions support?

of its orbital period. Write the variation equation.
Using the mean Earth/Sun distance of 1.496 X 10% km
and the Earth’s orbital period of 1 yr, the mass of the
Sun has been calculated to be 1.98892 % 10™ kg.
Given the orbital period of Mars is 1.88 yr, find its
mean distance from the Sun.

¥ CALCULATOR EXPLORATION AND DISCOVERY

Studying Joint Variations

Althongh a graphing calculator is limited to displaying the relationship between only two variables (for the most part),
it has a feature that enables us to see how these two are related with respect to a third, Consider the variation equation
from Example 8 in Section 2.6: F = 0.054v>. If we want to investigate the relationship between fuel consumption and
velocity, we can have the calculator display multiple versions of the relationship simultaneously for different values of d.
This is accomplished using the “{"* and “}"* symbols, which are functions to the parentheses. When the calcolator
sees values between these grouping symbols and separated by commas, it is programmed to use each value independently
of the others, graphing or evaluating the relation for cach value in the set. We illustrate by graphing the relationship
f = 0.05dv* for three different values of 4. Enter the cquation on the @& screen as Y = 0.05{10, 20, 30}X?, which
tells the caleulator to graph the equations Y; = 0,05(10)X%, Y, = 0.05(20)X* and Y, = 0.05(30)X” on the same grid.
Note that since d is constant, each graph is a parabola. Set the viewing window - .07
using the values given in Example 8 as a guide. The result is the graph shown in gure 2.
Figure 2.97, where we can study the relationship between these three variables 890
'|‘1=.05{1l:l.-2¢.-3ﬂ}lj§('

using the up () and down () arrows. From our work with the toolbox functions
and transformations, we know the widest parabola used the coefticient “10,” while
the narrowest parabola used the coefficient “30.” As shown, the graph tells us that

at a speed of 15 nautical miles per hour (X = 15), it will take 112.5 barrels of fuel . /
| #=15 éﬁuz.s .
0

to travel 10 mi (the first number in the list). After pressing the (=) key, the cursor
jumps to the second curve, which shows values of X = 15 and Y = 223, This
means at 15 nautical miles per hour, it would take 225 barrels of fuel Lo travel 20
mi. Use these ideas to complete the following exercises:

Exercise 1: The comparison of distance covered versus fuel consumption at different speeds also makes an interesting
study. This time velocities are constant values and the distance varies. On the G screen, enter Y, = 0.05x{10, 20, 30}2.
What family of equations results? Use the up/down arrow keys for x = 15 (a distance of 15 mi) to find how many
barrels of fuel it takes to travel 15 mi at 10 mph, 15 mi at 20 mph, and 15 mi at 30 mph. Comment on what you notice.

Exercise 2: The maximum safe load S for a wooden horizontal plank supported at both ends varies jointly with the
width W of the beam, the square of its thickness T, and inversely with its length L. A plank 10 ft long, 12 in, wide, and
1 in. thick will safely support 450 Ib. Find the value of k and write the variation equation, then use the equation to
explore:

a. Safe load versus thickness for a constant width and given lengths (quadratic function). Use w = 8 in. and {8, 12, 16}
for L.

b. Safe load versus length for a constant width and given thickness (reciprocal functional). Use w = 8 in. and
{5, 3.3} for thickness.
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™MLY STRENGTHENING CORE SKILLS

Variation and Power Functions: y = kx”

You may have noticed that applications of power functions (Section 2.4) can also be stated as variations (Section 2.6):
From the general equation shown in the title of this feature, “... y varies directly as x to the p power.” Due to the
nature of real data and data collection, applications of power functions based on regression yield values of k (the
constant of variation) and p (the power) that cannot be written in exact form. However, “fixed” relationshi ps modeled
by power functions produce values of k and p that can be writien in exact form, For instance, the power function that
models planctary orbits states: The time 7' it takes a planet to complete one orbil varies directly with its orbital radius
to the three-halves power: T = kR®. Here, the power is exactly 3 and the constant of variation turns out to be exactly 1
(also see Section 2.4, Exercise 78). Many times, finding this constant takes more effort, and utilizes the skills
developed in this and previous chapters. Consider the following.

Hlustration 1 » The volume V of 2 sphere varies directly with its surf face area S to the three-halves power. If the
volume is approximately 33,51 em® when the surface area is 50.30 cm?, (a) find the constant of variation yielded by
these values (round to two decimal places), and (b) find the exact constant of variation dictated by the geometry of the
sphere and write the variation equation.

a

Solution » a. V = kS vanialion equation
33.51 = k(50.30)F  cubsiitute 33.51 for V, 50.30 for S
33.51
= = solve for k
(50.30)%
0.09 =k apptoximate value for &

This gives V = 0.0957 as an approximate relationship.

b. To find the true constant of variation fixed by the nature of spheres, we begin with the same set up, but substitute
the actual formulas for volume and surface area, then simplify.

a
V = k5 variation equation

4 3 4
g*rrr:‘ = k(4arr2) & substitute 3 i for ¥, 4a” for §

4 3
51‘!’!‘3 = 87k pioperties of exponents: 4 = 8
= 6k multiply by g divide by r®
T
- =k solve for k
b’
1
— =k simplily {exact form)
67

1 2 1
52, Note that —— == 0.09,
v e

The constant of variation for this relationship is o giving a variation equation of V =
T

Studies of this type are important, because as the radius of the sphere gets larger, so does the error genf:ratcd by using
an approximate value, Uemb aradius of = 18 cm with the approximate relationship [V = 0.09 (4718%) ], gives a
volume of near 23,381.6 cm®, while the volume found using the exact vatue for k is about 24,429.0 cm?.

Exercise 1: Use this Strengthening Core Skills feature to find the exact constant of variation for the following
relationship: The volume of a cube varies directly with its surface area to the three-halves power.
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CUMULATIVE REVIEW CHAPTERS 1-2

1. Given f(x) = 2> + 44 + 8x — 7,
find f{—2) andf(%).
2. Find the solution set for: 2 — x << 5 and

3x + 2 < 8.

3. The area of a circle is 69 cm?. Find the
circumference of the same circle.

4, The surface area of a cylinder is A = 2#w/° + 2mrh.
Write r in terms of A and k& (solve for r).

5. Solveforx: —2(3 —x) + Sx =4(x + 1) — 7.

. . 27\
6. Evaluate without using a calculator; (*g—) .
7. Find the stope of each line:
a. through the points: (—4, 7) and (2, 5).
b. the line with equation 3x — 5y = 20.
8. Graph using transformations of a parent function.
a f(x) = Vx—2+3.
b. flx) = —|x + 2| - 3.
9. Graph the line passing through (—3, 2} with a slope
of m = 3, then state its equation.

10. Find (a) the length of the hypotenuse and (b) the
perimeter of the triangle shown.

57 cm
|

176 cm
11, Sketch the graph of h(x) = (_:_]H)T + 3 using a
v — 1)
transformation of the parent function,
Ay

12. Graph by plotting the y-intercept, then counting Ax
X
to find additional points: y = %x -2

13. Graph the piecewise-defined function
P-4, x<?2
flx)y = {x— I, 2sx=8
the following:

and determine

a. the domain and range

b. the value of f(—3), f{—1), (1), £(2), and £(3)
¢. the zeroes of the function

d. interval(s) where f(x) is negative/positive

e. location of any local max/min values

f. interval(s) where f(x) is increasing/decreasing

14. The graph of a function A(x) is shown. (a) State the
domain and estimate the range of 4. (h) What are
the zeroes of the function? (c) What is the value
of h{—1)7 (d) If h(k) = 9 what is the value of &7

]

/ ‘.\‘ |

( .1_n]4.'r \ |
—0 Wy
\ /

15. Add the rational expressions;

a -2 + 1

¥ =3x-10 x+2

2

b; b_.z - E

da a

16. Simplify the radical expressions:

-10 + V72 1

a. - b‘ ———
4 V2

17, Perform the division by factoring the numcrator:
(x* = 562 + 2x — 10) + (x — 5).

18. Determine if the following relation is a function.
If not, how is the definition of a function violated?

Parnassus
/'
La Giocanda

The School of Athens
Jupiter and Io

. Venus of Urbino
Correggio -

The Tempest
A

19. Find the center and radius of the circle defined by
2+ 6x+ 3P — 12y + 36 = 0,

20. The amount of pressure (in pounds per square
inch—psi) felt by a professional pearl diver as she
dives to harvest oysters, is 14.7 more than 0.43 times
the depth of the dive (in feet), Write the equation
model for this situation, If the oyster bed is at a
depth of 60 ft, how much pressure is felt?

21. The National Geographic Atlas of the World is a very
large, rectangular book with an almost inexhaustible
panoply of information about the world we live in.
The length of the front cover is 16 ¢m more than its
width, and the area of the cover is 1457 cm?. Use this
information to write an equation model, then use the
quadratic formula to determine the length and width
of the Atlas,

Titian
Raphael

Giorgione
da Vinci
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22. During a table tennis tournament, the championship

23

25

. A theorem from elementary ¥

game between J.W. and Mike took a dramatic and
unexpected turn. At one point in the game, J.W.
was losing 5-15, Facing a crushing loss, he
summoned all his willpower and battled on to

a 21-19 victory! Assuming the game score
relationship is linear, find the slope of the line
between these two scores and discuss its meaning
in this context.

Solve by factoring:
a. 6" — Tx =20
b. x> + 50 — 15=3x

geomelry states, “A line 4
tangent to a circle is Pl pY 3
perpendicular to the radius at &R, "
the point of tangency.” Find ) e
the equation of the tangent 3
line for the circle and radius s
shown.

A triangle has its vertices at (—4, 5), (4, —1),
and (0, 8). Find the perimeter of the triangle
and determine whether or not it is a right
triangle.

Exercises 26 through 30 require the use of a graphing
calculator.

26. Use the zeroes method to sclve the equation

27(x — 3) + 0.3 = 1.8 — 1.2(x + 4). Round your
answer to lwo decimal places.

27. Use a graphing calculator to graph the circle defined

by(x+2)2+y2=4.

S = {(x—2)2—3 k=1
30. The data given shows the growth of the total U.S,

2-94

28. Use a graphing calculator and the intersection-

of-graphs method to solve the inequality.
[1.2(x — 0.5)] < 0.4x + 1.4

29. Graph the following piecewise-defined function

using a graphing calculator. Then use the &
command to evaluate the function atx = 1.2,

-x+ 2 —5=x< -2

National Debt (in billions) for the years 1993 to
1999 (1993 — 1), and for the years 2001 to 2007
(2001 — 1), for each set of data, enter the data into a
graphing calculator, then

Year 1993 t0 2001 to
(scaled) 1999 2007
1 4.5 59
2 4.8 6.4
3 5.0 7.0
4 53 7.6
5 55 8.2
6 5.6 8.7
7 5.8 92

a. Set an appropriate window for viewing the
scatterplots, and determine if the associations are
linear or nonlinear.

b, If linear, find the regression equation for each
data set and graph both (as Y, and Y,) in the same
window (round to two decimal places).

¢. During which 7-year period did the national debt
increase faster? How much faster?
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EXAMPLE 1

Solution

CONNECTIONS TO CALCULUS

Chapter 2 actually highlights numerous concepts and skills that transfer directly into a
study of calculus. In the Connections to Calctelus introduction (page 105), we noted
that analyzing very small differences is one such skill, with this task carried out using
the absolute value concept. The ability to solve a wide variety of equation types will
also be a factor of your success in calculus. Here we’ll explore how these concepts and
skills are “connected.”

Solving Varlous Types of Equations

The need to solve equations of various types occurs frequently in both differential and
integral calculus, and the required skills will span a broad range of your algebraic ex-
perience. Here we’ll solve a type of radical equation that occurs frequently in a study
of optimization [finding the maximum or minimum value(s) of a function].

Minimizing Response Time

A boater is 70 yd away from a straight shoreline when she gets an emergency call
from her home, 400 yd downshore. Knowing she can row at 200 yd/min and run at
300 yd/min, how far downshore should she land the boat to make it home in the
shortest time possible?

As with other forms of problem solving, drawing an accurate sketch is an
important first step.

400 - &
Run

From the diagram, we note the rowing distance will be \V/x* + 4900 (using the
Pythagorean theorem), and the running distance will be 400 - x (total minus
distance downshore),

Y distance ' .
From the relationship time = e ¢ find the total time required to reach

\ .\. _+ 4% 400 .
+ - Usi ,
200 305 Using the tools of caleulus it can be

shown that the distance x downshore that results in the shortest possible time,

home is f{x) =

X |
is a zero of T{x) = — ——, Find the zero(es) of T(x} and state the
i 200Vx? + 4900 300

result in both exact and approximate form.

199
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Solution »  Begin by isolating the radical on one side.

EXAMPLE 2

Solution

1

X
200Vx% + 4900 300
X 1 1
= = add —

200V x% + 4900 300 LY
300x = 200V x% + 4900  clear denominators
1.5x = Vi + 4900 divide by 200

2.25x% = %% + 4900 square bath sides

0 fix)=10

1.25x% = 4900 subtract x”
2 = 3920 divide by 1,25
x = V3920 solve for x; x = 0 {distance)
x =285 simplity radical (sxact form)
= 62.6 approximale form

The boater should row to a spot about 63 yd downshore,
then run the remaining 337 yd,

Now try Exercises 1 and 2

In addition to radical equations, equations involving rational exponents are often seen
in a study of calculus. Many times, solving these equations involves combining the
basic properties of exponents with other familiar skills such as factoring, or in this
case, factoring least powers.

Modeling the Motion of a Particle

Suppose the motion of an object floating in turbulent water is modeled by the
function d(f) = V(¢ — 9t + 22), where d(f) represents the displacement (in
meters) at ¢ sec. Using the tools of calculus, it can be shown that the velocity v of

the particle is given by v(¢t) = %t’} - %té + 1172 Find any time(s) ¢ when the

particle is motionless (v = 0).

Set the equation equal to zero and factor out the fraction and least power.
53

274 _
- - *'*-ti + 11r 1= 0 original equation

2 2

4 | I 2/ | | | .
5(“(5): - 27(2(5){ + 22(‘5){ =0

1
E t_%(St2 —27t+ 22) =0 commen factor

1
rewrite to help iaclurE ¢! {least power)

%I_%(St — 22)(t — 1) = 0 factor the wrinomial
- 0t = 25—201‘1‘ =1 result

The particle is temporarily motionless at ¢ = 4.4 sec and t = 1 sec.

Now try Exercises 3 and 4
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EXAMPLE 3 »

Solution »

Connections to Calculus 201

Absolute Value Inequalities and Delta/Epsilon Form

While the terms may mean little to you now, the concept of absolute value plays an im-
portant role in the precise definition of a limit, intervals of convergence, and
devivatives. In the case of limits, the study of calculus concerns itself with very small
differences, as in the difference betwcen lhc number 3 itself, and a number very close

to 3, Consider the function f(x) =

shown, we see that f(x) (shown as Y,) is not defined at 3, but is defined for any
number near 3.

8 1Y A | Y
z.6 E.6 3.4 B
£ £.7 3.3 6.3
X E.f 32 6.2
2.9 £.9 31 6.1
%.g;! £.89 §'331 6.01
| _2.5088 % %0001 %ﬂ
Yy =5, 9939 [Y1=6.A8@]1

The figures also suggest that when x is a number very close to 3, f(x) is a number very
close to 6. Alternatively, we might say, “if the difference between x and 3 is very small,
the difference between f(x) and 6 is very small.” The most convenient way to express
this idea and make it practical is through the use of absolute value (which allows
that the difference can be either positive or negative). Using the symbols & (delta) and
€ (epsilon) to represent very small (and possibly unequal) numbers, we can write this
phrase in delta/epsilon form as

iflx = 3| < 8, then|f(x) — 6| < e

For now, we'll simply practice translating similar relationships from words into
symbols, leaving any definitive conclusions for our study of limits in Chapter 12, or a
future study of calculus.

Using Delta/Epslion Form

3~ 10
Use a graphing calculator to explore the value of g(x) = % when x is
near 2, then write the relationship in delta/epsilon form.

Using a graphing calculator and the approach outlined above produces the tables in
the figures.

b3 Yy # Y
1.6 6.5 2.4 7.4
1.7 6.7 2.3 7.2
18 6.8 2.2 7z
1.9 b. g 2.1 71
P |1 £, |
i.5589 | 2.0001 %l
Y126, 9999 Y=7. 8881

From these, it appears that, “if the difference between x and 2 is very small, the
difference between fix) and 7 is very small.” In delta/epsilon form:

ifje — 2| < &, then |f(x) — 7| < e.

Now try Exerclses 5 through 8 »
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At first, modeling this relationship may seem like a minor accomplishment. But
historically and in a practical sense, it is actually a major achievement as it enables us
to “tame the infinite,” since we can now verify that no matter how small ¢ is, there is a
corresponding & that guarantees

Az =T < e
f{x) is infinitely chose to 7

whenever k-2l <3

X is infinitely close to 2

This observation leads directly to the precise definition of a limit, the type of
“limit” referred to in our Introduction to Calculus, found in the Preface (page xxii). As
noted there, such limits will enable us to find a precise formula for the instantanecus
speed of a cue ball as it falls, and a precise formula for the volume of an irregular solid.

Connections to Calculus Exercises

Solve the following equations.

1. To find the length of a rectangle with maximum area
that can be circumscribed by a circle of radius 3 in,

xZ
requires that we solve V9 — »* — \/1~ =0,
9 —a?

where the length of the rectangle is 2x. To the
nearest hundredth, what is the length of the
rectangle?

2. To find the height of an isosceles triangle with
maximum area that can be inscribed in a circle of
radius » = 5 in. requires that we solve

i, + 25 - 42 - ——
V25 - ¥ V25 - ¥
where the height is 5 + x. What is the height of the
triangle?

=),

3. If the motion of a particle in turbulent air is
modeled by d = V(2> — 9t + 18), the velocity

27 4
of the particle is given by v = 56 — -é—rz + 9t

(d in meters, ¢ in seconds). Find any time(s) ¢ when
velocity v = 0,

4. In order for a light source to provide maximum
(circular) illumination to a workroom, the light
must be hung at a certain height. While the
complete development requires trigonometry, we
find that maximum illumination is obtained at the
solutions of the equation shown, where h is the
height of the light, & is a constant, and the radius of
illumination is 12 ft. Solve the equation for # by

factoring the least power and simplifying the

(W + 127 — 3070 + 127
(W + 122 B

result: &

Use a graphing calculator to explore the value of the function given for values of x near the one indicated, Then write
=2 the relationship in words and in delta/epsilon form.

4 -9 3 7x* — 28x
5. h(x) = 3 XT3 7.w(x)=—tﬁ_4 ix=2
x+m © o+ Tx




