QUALITY CONTROL AND ACCEPTANCE

STATISTICAL PROCEDURES BASED ON PERCENT-WITHIN-LIMITS (PWL)

PWL OVERVIEW

Percent-Within-Limits is a statistically-based method to estimate the percentage of a "lot" of material that falls within the required specifications.

A basic assumption is that the test values follow a normal distribution. The method then incorporates both the sample mean and standard deviation to estimate PWL.

A Normal Distribution naturally occurs as specific values are targeted, but not always hit

Past QC specifications have required that the average of the tests within a lot remain within certain limits

ODOT's Percent Within Limits specification allows only 10% of the lot to be outside the limits for 100% pay

ODOT's PWL spec has 3 main components:

Initialization Testing

•PWL Calculations

Control Charts

PWL CALCULATIONS

GENERAL INFORMATION ASPHALT

Sublots per lot
 Sublot size - 1,000 Tons
 Lot size - 5,000 Tons
 When Lot contains 3 or less sublots, combine w / previous lot

	LOWER*	UPPER*
QUALITY CHARACTERISTIC	SPEC	SPEC
	LIMIT	LIMIT
	(LSL)	(USL)
ASPHALT CEMENT CONTENT	JMF - 0.4 %	JMF + 0.4 %
AIR VOIDS (LAB-MOLDED)	JMF - 1.35 %	JMF + 1.35 %
ROADWAY DENSITY	91.5 %	97 %

* Special Provision 411-9QA(a-ap) 99

QUALITY CHARACTERISTIC	LOWER * <i>TARGET</i> LIMIT (LTL)	UPPER * <i>TARGET</i> LIMIT (UTL)
ASPHALT CEMENT CONTENT	JMF - 0.16 %	JMF + 0.16 %
AIR VOIDS (LAB-MOLDED)	JMF ^{**} - 0.75 %	JMF ^{**} + 0.75 %
ROADWAY DENSITY	93 %	96 %

* Special Provision 411-9QA(a-ap) 99

STEP 1

✓ Calculate Mean (X) for lot

Calculate Standard Deviation (S') for lot

EXTREME VALUES (OUTLIERS)

Apparently inconsistent results will be analyzed in accordance with ASTM E 178 (upper 2.5% significance level).

Test results determined not representative will be discarded. The remaining test results *may* be supplemented.

GENERAL PROCEDURE STEP 2

Check conditions for target-adjusted Standard Deviation (S")

✓ If necessary, calculate S"

GENERAL PROCEDURE STEP 3

✓ Calculate Lower Quality Index (Q_L)

✓ Calculate Upper Quality Index (Q_U)

GENERAL PROCEDURE STEP 4

Using the number of observations, the quality index, and the appropriate table, find the Percent Defective (PD)

✓ For a two-sided specification:
PD = PD_L + PD_U

STEP 5

Calculate Percent Within Limits (PWL)

PWL = 100 - PD

Note: If PWL < 50 % -May be required to remove and replace entire Lot for that Quality Characteristic -Lot may be subject to 0 % Pay

STEP 6

Calculate Pay Factor for each Quality Characteristic

PF = 0.024(PWL) -0.0001(PWL)² - 0.35 Note: If PWL = 100, PF = 1.05 Note: If PWL = 90, PF = 1.00

STEP 7

Calculate Combined Pay Factor (CPF)

$CPF = 5PF_D + 3PF_V + 2PF_A$

10

where: CPF = Combined Pay Factor, $PF_D = PF$ for Roadway Density, $PF_V = PF$ for Air Voids, and $PF_A = PF$ for Asphalt Content.

STEP 8

 ✓ Calculate Pay Adjustment (PA) PA_{Lot} = (CPF-1)(CUP)(Q_{Lot})
 where: PA_{Lot} = Pay Adjustment for Lot, CPF = Combined Pay Factor, CUP = Contract Unit Price, and Q_{Lot} = Quantity of material in Lot.

OTHER PAY ADJUSTMENTS

Smoothness (if required)

These adjustments will be completely independent of PWL adjustments. The total pay adjustment for the entire project is the sum BWL •SMOOTHNESS •ANY OTHER

EXAMPLE # 1

ASPHALT: % Air Voids

LOT / SUBLOT	<u>% AIR VOIDS</u>
2 / 1	4.7
2 / 2	4.8
2/3	5.8
2 / 4	4.9
2 / 5	5.1

STEP 1 - X AND S'

L/S	% AIR	X	(Xi-X)	(Xi-X) ²
2 / 1	4.7	5.06	-0.36	0.1296
2/2	4.8	5.06	-0.26	0.0676
2/3	5.8	5.06	0.74	0.5476
2/4	4.9	5.06	-0.16	0.0256
2 / 5	<u>5.1</u>	5.06	0.04	<u>0.0016</u>
	∑ = 25	.3		∑ = 0.772

 $X = {\sum_{N} X_i = {25.3 \atop 5} = 5.06}$

FINISH CALCULATING S'

$$S' = \sqrt{\sum_{i=1}^{n} \sum_{i=1}^{n} (X_i - X_i)^2}$$

$$S' = \sqrt{\frac{0.7720}{5.1}}$$

$$S' = 0.43932$$

STEP 2 - CHECK CONDITIONS LSL LTL USL UTL 4.75 % 5.35 % 2.65 % 3.25 % 5.06 % LSL = 4 - 1.35 = 2.65LTL = 4 - 0.75 = 3.25UTL = 4 + 0.75 = 4.75USL = 4 + 1.35 = 5.35

X is outside Target Limits and inside Specification Limits, so compute S"

STEP 2 - CHECK CONDITIONS (Compute S")

S"
$$4$$
 S'² + (X_{target} - X)²
S 4 0.43932² + (4.75 - 5.06)²

S" = 0.53768

Note: Had X been within target limits, LTL to UTL, or outside the specification limits, X < LSL or X > USL then: S" = S' (S" computation not needed)

STEP 3 – CALCULATE QL AND QU

$Q_{L} = \frac{X - LSL}{S''} = \frac{5.06 - 2.65}{0.53768} = 4.482$

$Q_U = \frac{USL - X}{S''} = \frac{5.35 - 5.06}{0.53768} = 0.539$

STEP 4 - FIND PD

SAMPLE SIZE N = 5

Q_U = 0.539 0.4 35.19 34.85 34.50 34.16 33.81 33.47 33.12 0.5 31.76 31.42 31.08 30.74 30.40 30.06 29.73 0.6 28.39 28.05 27.72 27.39 27.06 26.73 26.40

STEP 4 - FIND PD INTERPOLATE VALUES

STEP 5 - CALCULATE PWL

PWL = 100 - PD

= 100 - 31.114

= 68.886

STEP 6 - CALCULATE PAY FACTOR

$PF_{V} = 0.024(PWL) - 0.0001(PWL)^{2} - 0.35$ $= 0.024(68.886) - 0.0001(68.886)^{2} - 0.35$ = 0.829

STEP 7 - CALCULATE COMBINED PAY FACTOR $PF_D = 1.015*PF_v = 0.829PF_A = 1.007*$

 $CPF = \frac{5PF_{D} + 3PF_{V} + 2PF_{A}}{10}$ $= \frac{5(1.015) + 3(0.829) + 2(1.007)}{10}$ = 0.9576

* Example value

STEP 8 -CALCULATE PAY ADJUSTMENT CPF = 0.9576CUP = \$75.00 (example) $Q_{Lot} = 5000 \text{ TONS}$ (example) $PA_{Lot} = (CPF-1)(CUP)(Q_{Lot})$ $PA_{Lot} = (0.9576-1)($75.00)(5000)$ $PA_{Lot} = -$ \$15,900

CONTROL CHARTS

PROVIDES A VISUAL METHOD TO AID IN THE CONTRACTOR'S PROCESS CONTROL

TWO TYPES ARE REQUIRED

The first centers the mean on the y-axis and plots the test results showing one, two, and three standard deviations from the mean. This chart is meant to clearly show the process variability.

PERCENT AIR VOIDS

TWO TYPES ARE REQUIRED

The second plots the test results against the target and specification limits. This chart is meant to clearly show the process accuracy.

OUT-OF-CONTROL CONDITIONS

1Any one point is more than 3 SD's from the centerline

2Nine points in a row are on the same side of the centerline

3Six points in a row are all increasing or all decreasing

4Fourteen points in a row are alternating up and down

5Two out of three points are more than two SD's fron the centerline (and on the same side of the centerline)

OUT-OF-CONTROL CONDITIONS

6Four out of five points are more than 1 SD from the centerline (and on the same side of the centerline)
7Fifteen points in a row are all within 1 SD of the centerline
8Eight points in a row are all more than 1 SD from the centerline (on either side of the centerline)

Contractor must provide written notification to ODOT within 18 hours if any of alarm conditions 1, 2, 3, 5, 6, or 8 are observed.

Contractor must provide written notification to ODOT within 36 hours concerning the investigative / corrective actions taken.

Failure to provide written notification within the specified time period will result in an automatic 0.5% reduction in the composite pay factor for the lot affected.