Give an appropriate answer.

1) Find the value or values of c that satisfy the Mean Value Theorem for the function $f(x) = x^2 + 4x + 1$ on the interval [-3, 2].

2) Ben rides a unicycle back and forth along a straight east-west track. The twice-differentiable function B models Ben's position of the track, measured in meters from the western end of the track, at time t measured in seconds from the start of the ride. The table gives values of B(t) measured in meters at selected times t.

t(seconds)	0	10	40	60
B(t) (meters)	100	140	19	49

For $0 \le t \le 12$, must there be a time t when Ben's velocity is 4 meters per second? Justify your answer.

Use l'Hopital's Rule to evaluate the limit.

4)
$$\lim_{x \to 9} \frac{x^2 - 81}{x + 9}$$

Use l'Hopital's rule to find the limit.

5) $\lim_{\theta \to \Theta} \frac{7 - 7\cos\theta}{\sin 5\theta}$

The graph of a function is given. Sketch a graph of the functions derivative.

7) The graph of the derivative of a function is given. Sketch a graph of the function.

Solve the problem.

8) At time t \ge 0, the velocity of a body moving along the s-axis is v = t² - 11t + 10. Describe the motion of the particle. Justify your answer.